The platform based vibratory bowl feeders are essential elements in automatic assembly. Taking the bowl feeder as a typical three-legged rigidly connected compliant platform device, this paper applies von Mises’ compliance matrix to each of the leaf-spring legs, establishes screw systems of the legs and develops the Jacobian of the platform using the adjoint transformation. Based on the force equilibrium between the supporting and external wrenches and the twist deflection, a platform compliance matrix is proposed as a congruence transformation of the legs’ compliance matrices. The matrix is then decomposed into a central compliance matrix and an adjoint transformation, leading to the decomposition of the legs’ parameter effect from the platform assembly influence. The analysis presents the necessary and sufficient condition for the existence of the twist deflection that is equivalent to the characteristics equation of the compliant platform. Further based on the eigencompliances and eigentwist decomposition, the legs’ parameter effect and the platform assembly parameter influence are identified. This reveals the compliance characteristics of this type of devices and the parameters’ effect on the compliance and presents a suitable parameter range for design of the compliant platform device.

1.
Parameswaran
,
M. A.
, and
Ganapathy
,
S.
, 1979, “
Vibratory Conveying—Analysis and Design: A Review
,”
Mech. Mach. Theory
0094-114X,
14
, pp.
89
97
.
2.
Gladwell
,
G. M. L.
, and
Masour
,
W. M.
, 1971, “
Simulation of Vibratory Feeders
,”
Proceedings of the Symposium on Computer-Aided Engineering
,
University of Waterloo
, pp.
215
249
.
3.
Okabe
,
S.
, and
Yokoyama
,
Y.
, 1981, “
Study on Vibratory Feeders: Calculation of Natural Frequency of Bowl-Type Vibratory Feeders
,”
ASME J. Mech. Des.
1050-0472,
103
, pp.
249
256
.
4.
Maul
,
G. P.
, and
Thomas
,
M. B.
, 1997, “
A System Model and Simulation of the Vibratory Bowl Feeder
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
16
(
5
), pp.
309
314
.
5.
Silversides
,
R.
,
Dai
,
J. S.
, and
Seneviratne
,
L.
, 2005,
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
637
645
.
6.
Selig
,
J.
, and
Dai
,
J. S.
, 2005, “
Dynamics of Vibratory Bowl Feeders
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA)
.
7.
Morrey
,
D.
, and
Mottershead
,
J. E.
, 1986, “
Modeling of Vibratory Bowl Feeders
,”
J. Mech. Eng. Sci.
0022-2542,
200
(
C6
), pp.
431
437
.
8.
Yu
,
Y.-Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Ye
,
Y.
, and
He
,
M.-G.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
760
765
.
9.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Transactional Joints
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
657
666
.
10.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “A Novel Compliant Mechanism for Converting Reciprocating Translation into Enclosing Curved Paths
,
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
667
672
.
11.
Yu
,
S. D.
, and
Xi
,
F.
, 2003, “
Free Vibration Analysis of Planar Flexible Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
125
(
4
), pp.
764
772
.
12.
Dai
,
J. S.
, and
Kerr
,
D. R.
, 2000, “
A Six-Component Contact Force Measurement Device Based on the Stewart Platform
,”
Proceedings of IMechE
J. Mech. Eng. Sci.
0022-2542,
214
(
C5
), pp.
687
697
.
13.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
220
229
.
14.
Bonev
,
L. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
, 2003, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
573
581
.
15.
Foucault
,
S.
, and
Gosselin
,
C. M.
, 2004, “
Synthesis, Design and Prototyping of a Planar Three Degree-of—Freedom Reactionless Parallel Mechanism
,”
ASME J. Mech. Des.
1050-0472,
126
(
6
), pp.
992
999
.
16.
Wolf
,
A.
, and
Shoham
,
M.
, 2003, “
Investigation of Parallel Manipulators Using Linear Complex Approximation
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
564
572
.
17.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
576
580
.
18.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “
A Classification of Robot Compliance
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
581
584
.
19.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2004, “
Screw System Analysis of Parallel Mechanisms and Applications to Constraint and Mobility Study
,”
Proceedings of the 28th Biennial Mechanisms and Robotics Conference
,
Salt Lake City
, Sept. 28–Oct. 2.
20.
Ding
,
X.
, and
Selig
,
J. M.
, 2004, “
On the Compliance of Coiled Springs
,”
Int. J. Mech. Sci.
0020-7403,
46
, pp.
703
727
.
21.
Ting
,
K.-L.
, and
Zhang
,
Y.
, 2004, “
Rigid Body Motion Characteristics and Unified Instantaneous Motion Representation of Points
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
593
601
.
22.
Gausselin
,
C. M.
, and
Zhang
,
D.
, 2002, “
Stiffness Analysis of Parallel Mechanisms Using a Lumped Model
,”
Int. J. Rob. Autom.
0826-8185,
17
(
1
), pp.
17
27
.
23.
Simaan
,
N.
, and
Shoham
,
M.
, 2003, “
Geometric Interpretation of the Derivatives of Parallel Robots’ Jacobian Matrix with Application to Stiffness Control
,”
ASME J. Mech. Des.
1050-0472,
125
(
1
), pp.
33
42
.
24.
Ball
,
R. S.
, 1900,
A Treatise on The Theory of Screws
,
Cambridge University Press
,
Cambridge, England
.
25.
von Mises
,
R.
, 1924, “
Motorrechnung: Ein Neues Hilfsmittel in der Mechanik
,”
Z. Angew. Math. Mech.
0044-2267,
4
(
2
), pp.
155
181
.
Trans:
Baker
,
E. J.
, and
Wolhart
,
K.
, in
Motor Calculus: A New Theoretical Device for Mechanics
, published by
Graz, Austria: Institute for Mechanics
, University of Technology, 1996.
26.
Dimentberg
,
F. M.
, 1965,
The Screw Calculus and Its Applications in Mechanics
, Foreign Technology Division, Wright-Paterson Air Force Base, Ohio, Document No. FTD-HT-23–1632—67.
27.
Lončarić
,
J.
, 1987, “
Normal Forms of Stiffness and Compliance Matrices
,”
IEEE J. Rob. Autom.
0882-4967,
3
(
6
), pp.
567
572
.
28.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “Structure of Robot Compliance
,
,
ASME J. Mech. Des.
1050-0472,
115
, pp.
576
80
.
29.
Patterson
,
T.
,
Lipkin
,
H.
, 1993, “
A Classification of Robot Compliance
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
581
4
.
30.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2000, “
The Eigenscrew Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
2
), pp.
146
156
.
31.
Huang
,
S.
, and
Schimmels
,
J. M.
, 2002, “
The Duality in Spatial Stiffness and Compliance as Realized in Parallel and Serial Elastic Mechanisms
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
76
84
.
32.
Selig
,
J. M.
, and
Ding
,
X.
, 2002, “
Structure of the Spatial Stiffness Matrix
,”
Int. J. Rob. Autom.
0826-8185,
17
(
1
), pp.
1
16
.
33.
Selig
,
J. M.
, and
Ding
,
X.
, 2002, “
Diagonal Spatial Stiffness Matrices
,”
Int. J. Rob. Autom.
0826-8185,
17
(
2
), pp.
100
106
.
34.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
0094-114X,
36
(
5
), pp.
633
651
.
35.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
New York
.
36.
Ghafoor
,
A.
,
Dai
,
J. S.
, and
Duffy
,
J.
, 2004, “
Stiffness Modeling of a Soft-Finger Contact in Robotic Grasping
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
646
656
.
37.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null Space Construction Using Cofactors from a Screw Algebra Context
,”
Proc. R. Soc., Math. Physic. Eng. Sci.
1364-5021,
458
(
2024
) pp.
1845
1866
.
38.
Dai
,
J. S.
, 2006, “
An Historical Review of the Theoretical Development of Rigid Body Displacements from Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
41
52
.
39.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
, 1995, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators with Revolute Joints
,”
Proceedings of IMechE
,
J. Mech. Eng. Sci.
0022-2542,
209
(
C3
), pp.
263
272
.
40.
Dai
,
J. S.
, and
Kerr
,
D. R.
, 1996, “
Analysis of Force Distribution in Grasps Using Augmentation, Journal of Mechanical Engineering Science
,”
Proceedings of IMechE
,
J. Mech. Eng. Sci.
0022-2542,
210
(
C1
), pp.
15
22
.
You do not currently have access to this content.