In this research we develop a mathematical construct for estimating uncertainties within the bilevel optimization framework of collaborative optimization. The collaborative optimization strategy employs decomposition techniques that decouple analysis tools in order to facilitate disciplinary autonomy and parallel execution. To ensure consistency of the physical artifact being designed, interdisciplinary consistency constraints are introduced at the system level. These constraints implicitly enforce multidisciplinary consistency when satisfied. The decomposition employed in collaborative optimization prevents the use of explicit propagation techniques for estimating uncertainties of system performance. In this investigation, we develop and evaluate an implicit method for estimating system performance uncertainties within the collaborative optimization framework. The methodology accounts for both the uncertainty associated with design inputs and the uncertainty of performance predictions from other disciplinary simulation tools. These implicit uncertainty estimates are used as the basis for a new robust collaborative optimization (RCO) framework. The bilevel robust optimization strategy developed in this research provides for disciplinary autonomy in system design, while simultaneously accounting for performance uncertainties to ensure feasible robustness of the resulting system. The method is effective in locating a feasible robust optimum in application studies involving a multidisciplinary aircraft concept sizing problem. The system-level consistency constraint formulation used in this investigation avoids the computational difficulties normally associated with convergence in collaborative optimization. The consistency constraints are formulated to have the inherent properties necessary for convergence of general nonconvex problems when performing collaborative optimization.

1.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2000, “
Target Cascading in Optimal System Design
,” DAC-14265,
Proceedings of the 2000 ASME Design Automation Conference
,
Baltimore, Maryland
, September 10–13.
2.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
, and
Budhiraja
,
A.
, 2000b, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Optimization
,”
Structural Optimization
, Vol.
20
, No. 3,
Springer-Verlag
, Germany.
3.
DeMiguel
,
A-V.
, and
Murray
,
W.
, 2000, “
An Analysis of Collaborative Optimization Methods
,” AIAA-2000-4720,
Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, California
, September 6–8.
4.
Su
,
J.
, and
Renaud
,
J. E.
, 1997, “
Automatic Differentiation in Robust Optimization
,”
AIAA J.
0001-1452,
35
(
6
), pp.
1072
1079
.
5.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
, 1999, “
A New Methodology for the Estimation of Total Uncertainty in Computational Simulation
,” AIAA-99-1612, presented at the AIAA Non-Deterministic Approaches Forum, St. Louis, Missouri, April.
6.
Oberkampf
,
W. L.
,
DeLand
,
S. M.
,
Rutherford
,
B. M.
,
Diegert
,
K. V.
, and
Alvin
,
K. F.
, 2000, “
Estimation of Total Uncertainty in Modeling and Simulation
,” SANDIA REPORT SAND2000-0824, April 2000.
7.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
, 1997, “
Multidisciplinary aerospace design optimization survey of recent developments
,”
Struct. Optim.
0934-4373,
14
(
1
), pp.
1
23
.
8.
Gu
,
X.
,
Renaud
,
J. E.
, and
Batill
,
S. M.
, 1998, “
An Investigation of Multidisciplinary Design Subject to Uncertainty
,” AIAA 98-4747,
Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization
, pp.
309
319
,
St. Louis, MO
, September 2–4.
9.
Sobieszczanski-Sobieski
,
J.
, 1990, “
On the Sensitivity of Complex, Internally Coupled Systems
,”
AIAA J.
0001-1452,
28
(
1
), pp.
153
160
.
10.
Kroo
,
I.
,
Altus
,
S.
,
Braun
,
R.
,
Gage
,
P.
, and
Sobieski
,
I.
, 1994, “
Multidisciplinary Optimization Methods for Aircraft Preliminary Design
,” AIAA-94-4325-CP,
Proceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Panama City, Florida
, September.
11.
Braun
,
R. D.
, and
Kroo
,
I. M.
, 1997, “
Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment
,”
Multidisciplinary Design Optimization State of the Art
,
N.
Alexandrov
and
M. Y.
Hussaini
, eds.,
SIAM Series: Proceedings in Applied Mathematics
80
, pp.
98
116
.
12.
Braun
,
R. D.
,
Gage
,
P.
,
Kroo
,
I.
, and
Sobieski
,
I.
, 1996a, “
Implementation and Performance Issues in Collaborative Optimization
,” AIAA-96-4017,
Proceedings of the 6th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Bellevue, WA
.
13.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
, 1994, “
Optimization of Coupled Systems: A Critical Overview of Approaches
,” AIAA-94-4330-CP,
Proceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Panama City, Florida
.
14.
Sobieszczanski-Sobieski
,
J.
, 1993, “
Two Alternative Ways for Solving the Coordination Problem in Multilevel Optimization
,”
Struct. Optim.
0934-4373,
6
, pp.
205
215
.
15.
Braun
,
R. D.
,
Kroo
,
I. M.
, and
Moore
,
A. A.
, 1996b, “
Use of the Collaborative Optimization Architecture for Launch Vehicle Design
,” AIAA-96-4018,
Proceedings of the 6th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Bellevue, WA
.
16.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
, 1997, “
Multiobjective Collaborative Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
(
3
), pp.
403
411
.
17.
Gu
,
X.
,
Renaud
,
J. E.
,
Ashe
,
L. M.
,
Batill
,
S. M.
,
Budhiraja
,
A. S.
, and
Krajewski
,
L. J.
, 2000a, “
Decision Based Collaborative Optimization under Uncertainty
,” DETC2000/DAC-14297,
Proceedings of the ASME 2000 International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference
, CD-ROM Proceedings,
Baltimore, MD
, September 10–13 (accepted for publication in the ASME Journal of Mechanical Design).
18.
Kroo
,
I.
, and
Manning
,
V.
, “
Collaborative Optimization: Status and Directions
,” 2000, AIAA-2000-4721,
Proceedings of the 8th AIAA/NASA/USAF/ISSMO Multidisciplinary Analysis and Optimization Symposium
,
Long Beach, California
, September 6–8.
19.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2000a, “
Analytical and Computational Properties of Distributed Approaches to MDO
,” AIAA-2000-4718,
Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, California
, September 6–8.
20.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2000b, “
Algorithmic Perspectives on Problem Formulation in MDO
,” AIAA-2000-4719,
Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
,
Long Beach, California
, September 6–8.
21.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2002, “
Analytical and computational aspects of collaborative optimization for multidisciplinary design
,”
AIAA J.
0001-1452,
40
(
2
), pp.
301
309
.
22.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
Non-Gradient Based Parameter Sensitivity Estimation for Single Objective Robust Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
395
402
.
23.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
(
4
), pp.
385
394
.
24.
Chen
,
W.
,
Garimella
,
R.
, and
Michelena
,
N.
, 2001, “
Robust Design for Improved Vehicle Handling Under a Range of Maneuver Conditions
,”
Journal of Engineering Optimization
,
33
(
3
), pp.
303
326
.
25.
Chen
,
W.
, and
Lewis
,
K.
, 1999, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
0001-1452,
37
(
8
), pp.
982
989
.
26.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
, 1999, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,” ASME DETC99/DAC-8589, ASME Design Automation Conference, Las Vegas, NV.
27.
DeLaurentis
,
D. A.
, and
Mavris
,
D. N.
, 2000, “
Uncertainty Modeling and Management in Multidisciplinary Analysis and Synthesis
,” AIAA-2000-0422, 38th AIAA Aerospace Sciences Meeting, Reno, NV.
28.
Chen
,
W.
,
Allen
,
J. K.
,
Mavris
,
D.
, and
Mistree
,
F.
, 1996, “
A Concept Exploration Method for Determining Robust Top-Level Specifications
,”
Eng. Optimiz.
0305-215X,
26
, pp.
137
158
.
29.
Chen
,
W.
,
Allen
,
J. K.
,
Schrage
,
D. P.
, and
Mistree
,
F.
, 1997, “
Statistical Experimentation for Affordable Concurrent Design
,”
AIAA J.
0001-1452,
35
(
5
), pp.
893
900
.
30.
Sundaresan
,
S.
,
Ishii
,
K.
, and
Houser
,
D. R.
, 1993, “
A Robust Optimization Procedure with Variations on Design Variables and Constraints
,”
Advances in Design Automation, ASME
,
65-1
, pp.
379
386
.
31.
Emch
,
G.
, and
Parkinson
,
A.
, 1993, “
Using Engineering Models to Control Variability: Feasibility Robustness for Worst-Case Tolerances
,”
Advances in Design Automation, ASME
,
65-1
, pp.
411
418
.
32.
Ramakrishnan
,
B.
, and
Rao
,
S. S.
, 1994, “
A Efficient Strategies for the Robust Optimization of Large Scale Nonlinear Design Problems
,”
Advances in Design Automation, ASME
,
69-2
, pp.
25
35
.
33.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1991, “
Extensions to the Taguchi Method of Product Design
,”
Design Theory and Methodology, ASME
,
31
, pp.
21
30
.
34.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
1050-0472,
127
(
6
), pp.
1068
1076
.
35.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2005, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
851
857
.
36.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
562
570
.
37.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
403
411
.
38.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
39.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
40.
Taguchi
,
G.
, 1978, “
Off-Line and On-Line Quality Control Systems
,”
Proceedings of International Conference on Quality Control
,
Tokyo, Japan
, 1978.
41.
Taguchi
,
G.
, 1987,
System of Experimental Design
,
Don
Clausing
, ed.,
American Supplier Institute
, Dearborn, MI, 1987.
42.
Wujek
,
B. A.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Johoson
,
E. W.
, and
Brockman
,
J. B.
, 1996, “
Design Flow Management and Multidisciplinary Design Optimization in Application to Aircraft Concept Sizing
,” AIAA-96-0713, 34th Aerospace Sciences Meeting & Exhibit, Reno, NY.
43.
Tappeta
,
R. V.
, 1996, “
An Investigation of Alternative Problem Formulations for Multidisciplinary Optimization
,” M.S. thesis, University of Notre Dame.
44.
Gu
,
X.
, 2003, Uncertainty in Simulation Based Multidisciplinary Design Optimization, Doctoral Dissertation, University of Notre Dame, April.
You do not currently have access to this content.