In this work, the problem of shape optimization of flexible robotic manipulators of circular cross sections is studied. Two different manipulators are considered—a manipulator with revolute joint and a roller supported Cartesian manipulator. The finite element method is used to find the natural frequency and dynamic response of a flexible manipulator by treating it as an Euler-Bernoulli beam. The cross-sectional diameter is varied along the length keeping the constraint on the mass of the manipulator and static tip deflection in order to maximize the fundamental frequency of the beam. This optimization problem is compared with other optimization problems (with different objective functions and constraints). It is observed that the proposed optimization problem is superior to other optimization problems.

1.
Book
,
W. J.
, and
Majette
,
M.
, 1983, “
Controller Design for Flexible Distributed Parameter Mechanical Arm Via Combined State-Space and Frequency Domain Techniques
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
105
, pp.
245
254
.
2.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
849
854
.
3.
Wang
,
D.
, and
Vidyasagar
,
M.
, 1991, “
Control of a Class of Manipulators With the Last Link Flexible—Part I: Feedback Linearization
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113/4
, pp.
655
661
.
4.
Krishnamurthy
,
K.
,
Chandrashekhara
,
K.
, and
Roy
,
S.
, 1990, “
A Study of Single-Link Robots Fabricated From Orthotropic Composite Materials
,”
Comput. Struct.
0045-7949,
136
, pp.
139
146
.
5.
Book
,
W. J.
, 1974, “
Modeling, Design, and Control of Flexible Manipulators Arms
,” Ph.D Dissertation, MIT.
6.
Book
,
W. J.
, 1979, “
Analysis of Mass Less Elastic Chains With Servo-Controlled Joints
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
101
, pp.
187
192
.
7.
Chang
,
L. W.
, and
Gannon
,
K. P.
, 1990, “
A Dynamic Model of a Single Link Flexible Manipulator
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
138
143
.
8.
Mohamed
,
Z.
, and
Tokhi
,
M. O.
, 2004, “
Command Shaping Techniques for Vibration Control of a Flexible Robot Manipulator, Mechatronics
,”
Mechatronics
0957-4158,
14
, pp.
69
90
.
9.
Tadikonda
,
S. S. K.
, and
Baruh
,
H.
, 1992, “
Dynamics and Control of a Flexible Beam With a Prismatic Joint
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
422
427
.
10.
Buffinton
,
K. W.
, 1992, “
Dynamics of Elastic Manipulators With Prismatic Joints
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
41
49
.
11.
Hou
,
X.
, and
Tsui
,
S.
, 1988, “
A Control Theory for a Cartesian Flexible Robot Arm
,”
J. Math. Anal. Appl.
0022-247X,
225
, pp.
265
288
.
12.
Coleman
,
M. O.
, and
McSweeney
,
L. A.
, 2004, “
Analysis and Computation of the Vibration Spectrum of the Cartesian Flexible Manipulator
,”
J. Sound Vib.
0022-460X,
274
, pp.
445
454
.
13.
Kim
,
H. S.
, and
Tsai
,
L. W.
, 2003, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
43
51
.
14.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
253
261
.
15.
Yoshimura
,
M.
,
Nishiwaki
,
S.
, and
Izui
,
K.
, 2005, “
A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
49
57
.
16.
Wang
,
Fei-Yue
, 1994, “
On the Extremal Fundamental Frequencies of One-Link Flexible Manipulators
,”
Int. J. Robot. Res.
0278-3649,
13
, pp.
162
170
.
17.
Russell
,
J. L.
, 1995, “
Optimization Models for Flexible Manipulators
,” Ph.D. Dissertation, Department of Systems and Industrial Engineering, University of Arizona, Tucson.
18.
Russell
,
J. L.
, and
Gao
,
Y.
, 2003, “
Optimum Shape Design of Flexible Manipulators With Tip Loads
,” in
Advanced Studies of Flexible Robotic Manipulators: Modeling, Design, Control and Applications, Series in Intelligent Control and Intelligent Automation
, Vol.
4
,
F.-Y.
Wang
and
Y.
Gao
, eds.,
Word Scientific
,
Singapore
.
19.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
2nd ed.
,
TATA McGraw Hill
,
New Delhi
.
20.
Petyt
,
M.
, 1990,
Introduction to Finite Element Vibration Analysis
,
Cambridge University Press
,
Cambridge, Mass
.
21.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice Hall
,
New Jersey
.
22.
Arora
,
J. S.
, 1989,
Introduction to Optimum Design
,
McGraw Hill
,
New York
.
You do not currently have access to this content.