The use of a fourth-order motion curve is proposed by Stadtfeld and Gaiser to reduce the running noise of a bevel gear set recently. However, the methodology of synthesizing the tooth surfaces was not clearly shown in the literature. In this work, we proposed a methodology to synthesize the mating tooth surfaces of a face-milling spiral bevel gear set transmitting rotations with a predetermined fourth-order motion curve and contact path. A modified radial motion (MRM) correction in the machine plane of a computer numerical control (CNC) hypoid generator is introduced to modify the pinion tooth surface. With MRM correction, an arbitrary predetermined contact path on the pinion tooth surface with predetermined fourth-order motion curve can be achieved. Parameters of MRM correction are calculated according to the predetermined contact path and motion curve. As shown by the numerical examples, the contact path and the motion curve were obtained as expected by applying the MRM correction. The results of this work can be applied to the pinion, which is generated side-by-side (for example, fixed setting method, formate method, and Helixform method) and can be used as a basis for further study on the motion curve optimizations.

1.
Gleason Works
, 1991, “
Multi-Axis Bevel and Hypoid Gear Generating Machine
,” U.S. Patent No. 4981402.
2.
Gleason Works
, 2002, “
Machine and Method for Producing Bevel Gears
,” W.O. Patent No. 02066193.
3.
Klingelnberg
, 1995, “
Generating Continuous Corrections Toothed Arc Bevel Gears
,” D.E. Patent No. 4443513.
4.
Stadtfeld
,
H. J.
, 2000,
Advanced Bevel Gear Technology
,
The Gleason Works
,
Rochester
, New York.
5.
Stadtfeld
,
H. J.
, and
Gaiser
,
U.
, 2000, “
The Ultimate Motion Graph
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
317
322
.
6.
Litvin
,
F. L.
, 1960,
Theory of Gearing
, 1st ed. (
Nauka
, Moscow) (in Russian), 1968, 2nd ed. (Nauka, Moscow) (in Russian).
7.
Litvin
,
F. L.
, and
Gutman
,
Y.
, 1981, “
Methods of Synthesis and Analysis for Hypoid Gear-Drives of ‘Formate’ and ‘Helixform’, Part 1, 2, and 3
,”
ASME J. Mech. Des.
1050-0472,
103
(
1
), pp.
83
113
.
8.
Litvin
,
F. L.
, and
Zhang
,
Y.
, 1991,
Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears
, NASA Technical Report 90-C-028, Washington, DC.
9.
Litvin
,
F. L.
, 1989,
Theory of Gearing
, NASA RP-1212, Washington, DC.
10.
Litvin
,
F. L.
,
Zhang
,
Y.
,
Lundy
,
M.
, and
Heine
,
C.
, 1988, “
Determination of Settings of a Tilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
495
500
.
11.
Litvin
,
F. L.
,
Kuan
,
C.
,
Wang
,
J. C.
,
Handschuh
,
R. F.
,
Masseth
,
J.
, and
Maruyama
,
N.
, 1993, “
Minimization of Deviations of Gear Real Tooth Surfaces Determined by Coordinate Measurements
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
995
1001
.
12.
Litvin
,
F. L.
, 1994,
Gear Geometry and Applied Theory
,
Prentice Hall
, Englewood Cliffs, NJ, pp.
631
632
.
13.
Litvin
,
F. L.
,
Wang
,
A. G.
, and
Handschuh
,
R. F.
, 1998, “
Computerized Generation and Simulation of Meshing and Contact of Spiral Bevel Gears with Improved Geometry
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp.
35
64
.
14.
Argyris
,
J.
,
Fuentes
,
A.
, and
Litvin
,
F. L.
, 2002, “
Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
1057
1095
.
15.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Fan
,
Q.
, and
Handschuh
,
R. F.
, 2002, “
Computerized Design, Simulation of Meshing, and Contact and Stress Analysis of Face-Milled Formate Generated Spiral Bevel Gears
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
441
459
.
16.
Fuentes
,
A.
,
Litvin
,
F. L.
,
Mullins
,
B. R.
,
Woods
,
R.
, and
Handschuh
,
R. F.
, 2002, “
Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears
,”
ASME J. Mech. Des.
1050-0472,
124
(
3
), pp.
524
532
.
17.
Huston
,
R. L.
, and
Coy
,
J. J.
, 1982, “
Surafce Geometry of Circular-Cut Spiral Bevel Gears
,”
ASME J. Mech. Des.
1050-0472,
104
(
4
), pp.
743
748
.
18.
Krenzer
,
T. J.
, 1984, “
Computer Aided Corrective Machine Settings for Manufacturing Bevel and Hypoid Gears
,” AGMA Paper No. 84FTM4.
19.
Gosselin
,
C. J.
, and
Cloutier
,
L.
, 1993, “
The Generating Space for Parabolic Motion Error of Spiral Bevel Gears Cut by the Gleason Method
,”
ASME J. Mech. Des.
1050-0472,
115
(
3
), pp.
483
489
.
20.
Gosselin
,
C.
,
Shiono
,
Y.
,
Nonaka
,
T.
, and
Kubo
,
A.
, 1996, “
A Computer Based Approach Aimed at Reproducing Master Spiral Bevel and Hypoid Pinions and Gears
,” AGMA Paper No. 96FTM1.
21.
Gosselin
,
C.
,
Nonaka
,
T.
,
Shiono
,
Y.
,
Kubo
,
A.
, and
Tatsuno
,
T.
, 1998, “
Identification of the Machine Settings of Real Hypoid Gear Tooth Surfaces
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
429
440
.
22.
Lin
,
C. Y.
,
Tsay
,
C. B.
, and
Fong
,
Z. H.
, 1998, “
Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears with Minimum Surface Deviation
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
785
803
.
23.
Davidov
,
Y.
, 1998, “
General Idea of Generating Mechanism and its Application to Bevel Gears
,”
Mech. Mach. Theory
0094-114X,
33
(
5
), pp.
505
515
.
24.
Shunmugam
,
M. S.
,
Rao
,
B. S.
, and
Jayaprakash
,
V.
, 1998, “
Establishing Gear Tooth Surface Geometry and Normal Deviation, Part II-Bevel Gears
,”
Mech. Mach. Theory
0094-114X,
33
(
5
), pp.
525
534
.
25.
Goldrich
,
R. N.
, 1989, “
Theory of 6-axis CNC Generation of Spiral Bevel Gear and Hypoid Gears
,” AGMA Paper No. 89FTM9.
26.
Fong
,
Z. H.
, 2000, “
Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motions
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
136
141
.
27.
Lelkes
,
M.
,
Màrialigeti
,
J.
, and
Play
,
D.
2002, “
Numerical Determination of Cutting Parameters for the Control of Klingelnberg Spiral Bevel Gear Geometry
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
761
771
.
28.
Ernest Wildhaber
, 1945, “
Gear Tooth Curvature Treated Simply
,”
Am. Mach.
0002-9858,
89
(
18
), pp.
122
125
.
29.
Baxter
,
M. L.
Jr.
, 1961, “
Basic Geometry and Tooth Contact of Hypoid Gears
,”
Ind. Math.
0019-8528,
2
, pp.
1
28
.
You do not currently have access to this content.