The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parametrization through control points and adding another step to the process, that of subdivision. The control points allow a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C2 continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of some traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parametrization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the proposed compliant mechanism design process and will demonstrate the procedure on several examples common in the literature.

1.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
(
11
), pp.
93
96
.
2.
Fu
,
Y.
, and
Du
,
H.
, 2003, “
Fabrication of Micromachined TiNi Based Microgripper With Compliant Structure
,”
Proc. SPIE
0277-786X,
5116
, pp.
38
47
.
3.
Frecker
,
M. I.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 1998, “
Optimal Design of Compliant Mechanisms for Smart Structures Applications
,”
SPIE Conference on Mathematics and Control in Smart Structures
,
San Diego
, May 2-5, 1998, Vol.
3323
, pp.
234
242
.
4.
Dziedzic
,
R. P.
, and
Frecker
,
M. I.
, 2002, “
Design of Multifunctional Compliant Mechanisms for Minimally Invasive Surgery
,”
Proceedings of the 2002 Design Engineering Technical Conferences
,
Montreal, Quebec
, Canada, September 29–October 2, DETC2001/Mech-34212.
5.
Kota
,
S.
, 1999, “
Design of Compliant Mechanisms. Applications to MEMS
,”
SPIE Conference on Smart Electronics and MEMS
,
Newport Beach
, Ca. Vol.
3673
, pp.
45
54
.
6.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Free Form Skeletal Shape Optimization of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
125
, pp.
253
261
.
7.
Tai
,
K.
,
Cui
,
g. Y.
, and
Ray
,
T.
, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
Proceedings of the ASME 2000 Design Engineering Technical Conferences
,
Baltimore, MD
, September 10–13, 2000, DETC2000/DAC-14518.
8.
Canfield
,
S.
, and
Frecker
,
M.
, 1999, “
Design of Piezoelectric Inchworm Actuator and Compliant End-Effector for Minimally Invasive Surgery
,”
Proc. SPIE
0277-786X,
3668
(
2
), pp.
835
843
.
9.
Papalambros
,
P. Y.
, and
Chirehdast
,
M.
, 2000, “
An Integrated Environment for Structural Configuration Design
,”
J. Eng. Design
0954-4828,
1
(
1
), pp.
73
96
.
10.
Marson
,
A. L.
, and
Dutta
,
D.
, 1996, “
Construction of a Surface Model and Layered Manufacturing Data From 3D Homogenization Output
,”
J. Mech. Des.
1050-0472,
118
, pp.
412
418
.
11.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
(
2
), pp.
151
179
.
12.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, “
A Novel Formulation for the Design of Distributed Compliant Mechanisms
,”
Proceedings of the ASME 2002 Design Engineering Technical Conferences
,
Monreal, Quebec
, Canada, September 29-October 2, DETC2002/MECH-34213.
13.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, “
Sparse Monolithic Compliant Mechanisms Using Coninuum Structural Topology Optimization
,”
Proceedings of the ASME 2004 Design Engineering Technical Conferences
,
Salt Lake City, Utah
, September 28–October 2, 2004, DETC2004/MECH-57453.
14.
Sorin
,
D.
, and
Schroder
,
P.
, 2000, “
Organizers of the Subdivision for Modeling and Animation
,” SIGRAPH 2000 Course Notes.
15.
Catmull
,
E.
, and
Clark
,
J.
, 1978, “
Recursively Generated B-spline Surfaces on Arbitrary Topological Meshes
,”
Comput.-Aided Des.
0010-4485,
10
, pp.
350
355
.
16.
Doo
,
D.
, and
Sabin
,
M.
, 1978, “
Behaviour of Recursive Division Surfaces Near Extraordinary Points
,”
Comput.-Aided Des.
0010-4485,
10
(
6
), pp.
356
360
.
17.
Green
,
S.
,
Turkiyyah
,
G.
, and
Storti
,
D.
, 2002, “
Subdivision-Based Multilevel Methods for Large Scale Engineering Simulation of Thin Shells
,”
Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications
,
Saarbrucken
,
Germany
, June 17-21 2002, pp.
265
272
.
18.
Haftka
,
R. T.
, and
Grandhi
,
R. V.
, 1986, “
Structural Shape Optimization—A Survey
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
57
, pp.
91
106
.
19.
Lau
,
G. K.
,
Du
,
H.
, and
Lim
,
M. K.
, 2001, “
Use of Functional Specifications as Objective Functions in Topological Optimization of Compliant Mechanism
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4421
4433
.
20.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
J. Mech. Des.
1050-0472,
116
, pp.
1005
1012
.
21.
Jakiela
,
M. J.
,
Chapman
,
C. D.
,
Duda
,
J.
,
Adewuya
,
A.
, and
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
, pp.
339
356
.
22.
Lu
,
K.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
, pp.
379
391
.
23.
Parsons
,
R.
, and
Canfield
,
S.
, 2002, “
Developing Genetic Programming Techniques for the Design of Compliant Mechanisms
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
1
), pp.
78
86
.
24.
Saxena
,
A.
, 2002, “
On Multiple-Material Optimal Compliant Topologies: Discrete Variable Parametrization Using Genetic Algorithm
,”
Proc. of The 2002 Design Engineering Technical Conferences
,
Montreal
, Canada, DETC2002/MECH-34209.
25.
Roberts
,
F. S.
, 1976,
Discrete Mathematical Models With Applications to Social, Biological and Environmental Problems
,
Prentice-Hall
,
Phoenix, AZ
.
26.
Deb
,
K.
, and
Goel
,
T.
, 2001, “
A Hybrid Multi-Objective Evolutionary Approach to Engineering Shape Design
,”
Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO-2001)
, March 7–9,
Zurich
, Switzerland, pp.
385
399
.
27.
Frecker
,
M. I.
,
Ananthsuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant U Multi-Criteria Optimization
,”
J. Mech. Des.
1050-0472,
119
, pp.
238
245
.
28.
Chipperfield
,
A.
,
Fleming
,
P.
,
Pohleim
,
H.
, and
Fonesca
,
C.
, 2002, “
Genetic Algorithm Toolbox, for use with MATLAB
,” Users Guide Version 2.1.
29.
Dozier
,
G.
,
Bowen
,
J.
, and
Homaifar
,
A.
, 1998, “
Solving Constraint Satisfaction Problems Using Hybrid Evolutionary Search
,”
IEEE Trans. Evol. Comput.
1089-778X,
2
(
1
), pp.
23
33
.
30.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
1
), pp.
36
49
.
31.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1998, “
Size and Shape Optimization of Compliant Mechanisms: An Efficiency Formulation
,”
Proceedings of the ASME 1998 Design Engineering Technical Conferences
, DETC98/MECH-5943.
You do not currently have access to this content.