An optimization model has been built with consideration of the required reliability, the minimum machining cost, and quality loss. The normal and the lognormal distributions of tolerances that depend on the production types of components are used in the reliability model. Cost tolerance data obtained from Bjørke are used to calculate the machining cost. The asymmetric quadratic quality loss model is used to calculate quality loss caused by the deviation and the mean-shift of distributions. Tolerance allocation of a sliding vane rotary compressor is optimized for the required reliability, the minimum cost and quality loss, and optimum tolerances of components are recommended. The results show that high accuracies of the slot length, the vane thickness, and the slot width are required. Hence, their tolerances are smaller than other components. The effects of the correlation coefficient of the bottom cover plate and the top cover plate and the correlation coefficient of the front cover plate and the rear cover plate to total cost are insignificant. Further, the cost of quality loss is reduced when the weighting ratio of the quality loss function weighting coefficient to the machining cost function weighting coefficient is increased. The total cost is increased because tight tolerance allocation increases the machining cost.

1.
Huang
,
Y. M.
, 1995, “
Analysis of the Roto-Cooler Air-Conditioning System
,”
Refrigeration
0034-3714,
18
, pp.
367
372
.
2.
Huang
,
Y. M.
, and
Huang
,
C.-T.
, 2002, “
Disassembly Matrix for Disassembly Processes of Products
,”
Int. J. Prod. Res.
0020-7543,
40
, pp.
255
273
.
3.
Huang
,
Y. M.
, and
Chang
,
C. H.
, 1997, “
The Stress and Deflection Analysis for the Radial Blade of the RCAC System
,”
Refrigeration
0034-3714,
20
, pp.
55
62
.
4.
Huang
,
Y. M.
, and
Liaw
,
Y.-S.
, 2001, “
The Impact of Sliding Blades in a Rotary Compressor
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
583
589
.
5.
Huang
,
Y. M.
, and
Yang
,
S. A.
, 2002, “
Evaluation of Performance for a Rotary Vane Compressor
,”
Seventh NRC/ASME Symposium on Valve and Pump Testing
, NUREG/CP-0152,
4
, pp.
3A1
3A16
.
6.
Bjørke
,
Ø.
, 1989,
Computer Aided Tolerancing
,
2nd Edition
,
ASME Press
.
7.
Juster
,
N. P.
,
Dew
,
P. M.
, and
Pennington
,
A.
, 1992, “
Automating Linear Tolerance Analysis Across Assemblies
,”
ASME J. Mech. Des.
1050-0472,
114
, pp.
174
179
.
8.
Feng
,
S. C.
, and
Yang
,
Y.
, 1995, “
A Dimension and Tolerance Data Model for Concurrent Design and Systems Integration
,”
J. Manuf. Syst.
0278-6125,
14
, pp.
406
426
.
9.
Parkinson
,
D. B.
, 2000, “
The Application of a Robust Design Method to Tolerancing
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
149
154
.
10.
Zhou
,
Z.
,
Huang
,
W.
, and
Zhang
,
L.
, 2001, “
Sequential Algorithm Based on Number Theoretic Method for Statistical Tolerance Analysis and Synthesis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
490
493
.
11.
Jordaan
,
J. P.
, and
Ungerer
,
C. P.
, 2002, “
Optimization of Design Tolerances Through Response Surface Approximations
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
762
767
.
12.
Di Stefano
,
P.
, 2003, “
Tolerance Analysis and Synthesis Using the Mean Shift Model
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
217
, pp.
149
159
.
13.
Hong
,
Y. S.
, and
Chang
,
T. C.
, 2003, “
Tolerancing Algebra: A Building Block for Handling Tolerance Interactions in Design and Manufacturing
,”
Int. J. Prod. Res.
0020-7543,
41
, pp.
47
63
.
14.
Marin
,
R. A.
, and
Ferreira
,
P. M.
, 2003, “
Analysis of the Influence of Fixture Locator Errors on the Compliance of Work Part Features to Geometric Tolerance Specifications
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
609
616
.
15.
Manarvi
,
I. A.
, and
Juster
,
N. P.
, 2004, “
Framework of an Integrated Tolerance Synthesis Model and Using FE Simulation as a Virtual Tool for Tolerance Allocation in Assembly Design
,”
J. Mater. Process. Technol.
0924-0136,
150
, pp.
182
193
.
16.
Hu
,
J.
,
Xiong
,
G.
, and
Wu
,
Z.
, 2004, “
A Variational Geometric Constraints Network for a Tolerance Type Specification
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
24
, pp.
214
222
.
17.
Wu
,
W.
, and
Rao
,
S. S.
, 2004, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
581
592
.
18.
Mujezinovi’c
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2004, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
504
518
.
19.
Dong
,
Z.
,
Hu
,
W.
, and
Xue
,
D.
, 1994, “
New Production Cost-Tolerance Models for Tolerance Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
116
, pp.
199
206
.
20.
Shiu
,
W.
,
Apley
,
D. W.
,
Geglarek
,
D.
, and
Shi
,
J.
, 2003, “
Tolerance Allocation for Compliant Beam Structure Assemblies
,”
IIE Trans.
0740-817X,
35
, pp.
329
342
.
21.
Xue
,
J.
, and
Ji
,
P.
, 2004, “
Process Tolerance Allocation in Angular Tolerance Charting
,”
Int. J. Prod. Res.
0020-7543,
42
, pp.
3929
3945
.
22.
Mahadevan
,
S.
, and
Ni
,
K.
, 2003, “
Damage Tolerance Reliability Analysis of Automotive Spot-Welded Joints
,”
Reliab. Eng. Syst. Saf.
0951-8320,
81
, pp.
9
21
.
23.
Söderberg
,
R.
, 1994, “
Tolerance Allocation Considering Customer and Manufacturer Objectives
,”
Adv. Design Automation, ASME DE
,
65-2
, pp.
149
157
.
24.
Jeang
,
A.
, 1994, “
Tolerance Design: Choosing Optimal Tolerance Specifications in The Design of Machined Parts
,”
Qual. Reliab. Eng. Int
0748-8017,
10
, pp.
27
35
.
25.
Krishnaswami
,
M.
, and
Mayne
,
R. W.
, 1994, “
Optimizing Tolerance Allocation Based on Manufacturing Cost and Quality Loss
,”
Adv. Design Automation, ASME DE
,
69-1
, pp.
211
217
.
26.
Cheng
,
B. W.
, and
Maghsoodloo
,
S.
, 1995, “
Optimization of Mechanical Assembly Tolerances by Incorporating Taguchi’s Quality Loss Function
,”
J. Manuf. Syst.
0278-6125,
14
, pp.
264
276
.
27.
Ye
,
B.
, and
Salustri
,
F. A.
, 2003, “
Simultaneous Tolerance Synthesis for Manufacturing and Quality
,”
Res. Eng. Des.
0934-9839,
14
, pp.
98
106
.
28.
Li
,
M. H. C.
, 2004, “
Optimal Target Selection for Unbalanced Tolerance Design
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
23
, pp.
743
749
.
29.
Lee
,
J.
, and
Johnson
,
G. E.
, 1993, “
Optimal Tolerance Allotment Using a Genetic Algorithm and Truncated Monte Carlo Simulation
,”
Comput.-Aided Des.
0010-4485,
25
, pp.
601
611
.
30.
Skowronski
,
V. J.
, and
Turner
,
J. U.
, 1997, “
Using Monte-Carlo Variance Reduction in Statistical Tolerance Synthesis
,”
Comput.-Aided Des.
0010-4485,
29
, pp.
63
69
.
31.
Vasseur
,
H.
,
Kurfess
,
T. R.
, and
Cagan
,
J.
, 1997, “
Use of a Quality Loss Function to Select Statistical Tolerances
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
410
416
.
32.
Choi
,
H. G.
,
Park
,
M. H.
, and
Salisbury
,
E.
, 2000, “
Optimal Tolerance Allocation With Loss Functions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
529
535
.
33.
Greenwood
,
W. H.
, and
Chase
,
K. W.
, 1987, “
A New Tolerance Analysis Method for Designers and Manufacturers
,”
ASME J. Eng. Ind.
0022-0817,
109
, pp.
112
116
.
34.
Rao
,
S. S.
, 1992,
Reliability-Based Design
,
McGraw-Hill
, New York.
35.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1981, “
Non-Normal Dependent Vectors in Structural Safety
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
107
, pp.
1227
1238
.
36.
Taguchi
,
G.
, and
Wu
,
Y.
, 1985,
Introduction to Off-Line Quality Control
, Central Japan Quality Control Association.
37.
Zhang
,
G.
, and
Porchet
,
M.
, 1993, “
Some New Developments in Tolerance Design in CAD
,”
Advances in Design Automation, ASME DE
,
65-2
, pp.
175
185
.
38.
Honda
,
I.
,
Ohba
,
H.
,
Soejima
,
M.
, and
Nakashima
,
Y.
, 1990, “
Analysis of a Gap Flow on the Side Plate for Rotary Vane Compressor
,”
Nippon Kikai Gakkai Ronbunshu, JSME
,
56
, pp.
1607
1610
.
39.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1981, “
Non-Normal Dependent Vectors in Structural Safety
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
0044-7951,
107
, pp.
1227
1238
.
40.
Ang
,
A. H. S.
, and
Tang
,
W. H.
, 1984,
Probability Concepts in Engineering Planning and Design. Vol. II—Decision, Risk, and Reliability
,
John Wiley
, New York.
You do not currently have access to this content.