Uncertainty analysis, which assesses the impact of the uncertainty of input variables on responses, is an indispensable component in engineering design under uncertainty, such as reliability-based design and robust design. However, uncertainty analysis is an unaffordable computational burden in many engineering problems. In this paper, an uncertainty analysis method is proposed with the purpose of accurately and efficiently estimating the cumulative distribution function (CDF), probability density function (PDF), and statistical moments of a response given the distributions of input variables. The bivariate dimension reduction method and numerical integration are used to calculate the moments of the response; then saddlepoint approximations are employed to estimate the CDF and PDF of the response. The proposed method requires neither the derivatives of the response nor the search of the most probable point, which is needed in the commonly used first and second order reliability methods (FORM and SORM) and the recently developed first order saddlepoint approximation. The efficiency and accuracy of the proposed method is illustrated with three example problems. With the same computational cost, this method is more accurate for reliability assessment and much more efficient for estimating the full range of the distribution of a response than FORM and SORM. This method provides results as accurate as Monte Carlo simulation, with significantly reduced computational effort.

1.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability, and Statistical Methods in Engineering Design
,
Wiley
, NY.
2.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
403
411
.
3.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
124
(
4
), pp.
562
570
.
4.
Taguchi
G.
, 1993,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME
, NY.
5.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
(
4
), pp.
385
394
.
6.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment for Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
7.
Creveling
,
C. M.
,
Slutsky
,
J. L.
, and
Antis
,
D.
, 2003,
Design for Six Sigma: In Technology and Product Development
,
Prentice Hall
, NJ.
8.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Hatftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
386
394
.
9.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,” ASCE
J. Eng. Mech. Div.
0044-7951,
100
(
EM1
), pp.
111
121
.
10.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinomial Integrals
,”
J. Eng. Mech.
0733-9399,
110
(
3
), pp.
357
367
.
11.
Hohenbichler
,
M.
,
Gollwitzer
,
S.
,
Kruse
,
W.
, and
Rackwitz
,
R.
, 1987, “
New Light on First- and Second-Order Reliability Methods
,”
Struct. Safety
0167-4730,
4
, pp.
267
284
.
12.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
The First Order Saddlepoint Approximation for Reliability Anal.
,”
AIAA J.
0001-1452,
42
(
6
), pp.
1199
1207
.
13.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
, 2003, “
The Use of Metamodeling Techniques for Design under Uncertainty
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
2
), pp.
99
116
.
14.
Isukapalli
,
S. S.
, and
Georgopoulos
,
P. G.
, 1998, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological System
,”
Risk Anal.
0272-4332,
18
(
3
), pp.
351
363
.
15.
Adhikari
,
S.
, and
Langley
,
R. S.
, 2002, “
Reduction of Random Variables in Structural Reliability Analysis
,”
3rd International Conference on Mathematical Methods in Reliability Methodology and Practice
, Trondheim, Norway, June 17–20, 2002.
16.
Du
,
X.
, and
Sudjianto
,
A.
, 2004, “
A Saddlepoint Approximation Method for Uncertainty Analysis
,”
Proceedings of DETC’04: ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Salt Lake City, UT, September 28–October 3, 2004.
17.
Papadrakakis
,
M.
, and
Lagaros
,
N. D.
, 2002, “
Reliability-Based Structural Optimization Using Neural Networks and Monte Carlo Simulation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
191
(
32
), pp.
3491
3507
.
18.
Moarefzadeh
,
M. R.
, and
Melchers
,
R. E.
, 1999, “
Directional Importance Sampling for Ill-Proportioned Spaces
,”
Struct. Safety
0167-4730,
21
(
1
), pp.
1
22
.
19.
Dey
,
A.
, and
Mahadevan
,
S.
, 1998, “
Ductile Structural System Reliability Analysis Using Adaptive Importance Sampling
,”
Struct. Safety
0167-4730,
20
(
2
), pp.
137
154
.
20.
Mckay
,
M. D.
,
Conover
,
W. J.
, and
Beckman
,
R. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
,”
Technometrics
0040-1706,
21
(
2
), pp.
239
245
.
21.
Rosenblueth
,
E.
, 1981, “
Point Estimates for Probability Moments
,”
Appl. Math. Model.
0307-904X,
5
, pp.
329
335
.
22.
Zhao
,
Y. G.
,
Alfredo
,
H. S.
, and
Ang
,
H. M.
, 2003, “
System Reliability Assessment by Method of Moments
,”
J. Struct. Eng.
0733-9445,
129
(
10
), pp.
1341
1349
.
23.
Seo
,
H. S.
, and
Kwak
,
B. M.
, 2002, “
Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information
,”
Int. J. Prod. Res.
0020-7543,
40
(
4
), pp.
931
944
.
24.
Daniels
,
H. E.
, 1954, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
0003-4851,
25
, pp.
631
650
.
25.
Rahman
,
S.
, and
Xu
,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
19
, pp.
393
408
.
26.
Xu
,
H.
, and
Rahman
,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
(
12
), pp.
1992
2019
.
27.
Davis
,
P. J.
, and
Rabinowitz
,
P.
, 1983,
Methods of Numerical Integration
,
2nd ed.
,
Academic Press Inc.
, London.
28.
Rosenblatt
,
M.
, 1952, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
0003-4851,
23
, pp.
470
472
.
29.
Wang
,
L.
, and
Grandhi
,
R. V.
, 1995, “
Structural Reliability Optimization Using an Efficient Safety Index Calculation Procedure
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
(
10
), pp.
1721
1738
.
30.
Mohanty
,
S.
, and
Wu
,
Y.-T.
, 2001, “
CDF Sensitivity Analysis Technique for Ranking Influential Parameters in the Performance Assessment of the Proposed High-Level Waste Repository at Yucca Mountain, NV, USA
,”
Reliab. Eng. Syst. Saf.
0951-8320,
73
, pp.
167
176
.
31.
Beyer
,
W. H.
, 1991,
CRC Standard Mathematical Tables and Formulae
,
29th ed.
,
CRC Press
, Boca Raton, FL.
32.
Wang
,
S.
, 1992, “
General Saddlepoint Approximations in the Bootstrap
,”
Stat. Probab. Lett.
0167-7152,
13
, pp.
61
66
.
33.
Kuonen
,
D.
, 2001,
Computer-Intensive Statistical Methods: Saddlepoint Approximations with Applications in Bootstrap and Robust Inference
, Ph.D. thesis, Swiss Federal Institute of Technology.
34.
Reid
,
N.
, 1988, “
Saddlepoint Methods and Statistical Inference (with Discussion)
,”
Stat. Sci.
0883-4237,
3
, pp.
213
238
.
35.
Goutis
,
C.
, and
Casella
,
G.
, 1999, “
Explaining the Saddlepoint Approximation
,”
Am. Stat.
0003-1305,
53
(
3
), pp.
216
224
.
36.
Huzurbazar
,
S.
, 1999, “
Practical Saddlepoint Approximations
,”
Am. Stat.
0003-1305,
53
(
3
), pp.
225
232
.
37.
Kendall
,
M. G.
, and
Stuart
,
A.
, 1958,
The Advanced Theory of Statistics Volume 1: Distribution Theory
,
Charles Griffin & Company
, London.
38.
Gatto
,
R.
, and
Ronchetti
,
E.
, 1996, “
General Saddlepoint Approximations of Marginal Densities and Tail Probabilities
,”
J. Am. Stat. Assoc.
0162-1459,
91
(
433
), pp.
666
673
.
39.
Lugannani
,
R.
, and
Rice
,
S. O.
, 1980, “
Saddlepoint Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
0001-8678,
12
, pp.
475
490
.
40.
Wang
,
L.
,
Beeson
,
D.
, and
Wiggs
,
G.
, 2004, “
Efficient and Accurate Point Estimate Method for Moments and Probability Distribution
,”
Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, NY, August 30–September 1, 2004, AIAA 2004–4359..
You do not currently have access to this content.