Abstract

This paper presents a three-dimensional (3D) extension of our previous work on the synthesis of assemblies whose dimensional integrity is insensitive to the dimensional variations of individual parts. Assuming that assemblies can be built in the reverse sequence of decomposition, the method recursively decomposes a given product geometry into two subassemblies until parts become manufacturable. At each recursion, joints are assigned to the interfaces between two subassemblies to ensure the two criteria for robust dimensional integrity, in-process dimensional adjustability, and proper part constraints. Screw theory is utilized as a unified 3D representation of the two criteria. A case study on an automotive space frame is presented to demonstrate the method.

1.
Lee
,
B.
, and
Saitou
,
K.
, 2003, “
Decomposition-Based Assembly Synthesis for In-Process Dimensional Adjustability
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
464
473
.
2.
Whitney
,
D. E.
,
Mantripragada
,
R.
,
Adams
,
J. D.
, and
Rhee
,
S. J.
, 1999, “
Designing Assemblies
,”
Res. Eng. Des.
0934-9839,
11
, pp.
229
253
.
3.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME Press
, New York.
4.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
, Cambridge.
5.
Whitehead
,
T. N.
, 1954,
The Design and Use of Instruments and Accurate Mechanism
,
Dover
, New York.
6.
Kamm
,
L. J.
, 1990,
Designing Cost-Effective Mechanisms
,
McGraw-Hill
, New York.
7.
Kriegel
,
J. M.
, 1995, “
Exact Constraint Design
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
117
(
5
), pp.
88
90
.
8.
Downey
,
K.
,
Parkinson
,
A. R.
, and
Chase
,
K. W.
, 2002, “
Smart Assemblies for Robust Design: A Progress Report
,”
Proceedings of the 2002 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal
, Canada, 29 Sep.–2 Oct., Paper No. DETC2002/DAC–34135.
9.
Waldron
,
K. J.
, 1966, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
0022-2569,
1
(
2
), pp.
101
114
.
10.
Konkar
,
R.
, and
Cutkosky
,
M.
, 1995, “
Incremental Kinematic Analysis of Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
589
596
.
11.
Adams
,
J. D.
, and
Whitney
,
D. E.
, 1999, “
Application of Screw Theory to Constraint Analysis of Assemblies of Rigid Parts
,”
Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning
,
Porto
, Portugal, July 1999, pp.
69
74
.
12.
Lee
,
B.
, and
Saitou
,
K.
, 2003, “
Assembly Synthesis with Subassembly Partitioning for Optimal In-Process Dimensional Adjustability
,”
Proceedings of the 2003 ASME Design Engineering Technical Conferences
,
Chicago
, Illinois, 2–6 Sep., Paper No. DETC2003/DAC–48730.
13.
Lee
,
D. J.
, and
Thornton
,
A. C.
, 1996, “
The Identification and Use of Key Characteristics in the Product Development Process
,”
Proceedings of the 1996 ASME Design Engineering Technical Conferences
,
Irvine
, California, Paper No. 96-DETC/DTM–1506.
14.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
, New York.
15.
Roth
,
B.
, 1983, “
Screws, Motors, and Wrenches that can not be Bought in a Hardware Store
,”
Robotics Research, The First Symposium
,
MIT Press
, Cambridge, MA, pp.
679
735
.
16.
Woo
,
L.
, and
Freudenstein
,
F.
, 1970, “
Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems
,”
J. Mech.
0022-2569,
5
, pp.
417
460
.
17.
Foulds
,
L. R.
, 1991,
Graph Theory Applications
,
Springer-Verlag
, New York.
18.
Wu
,
Y.
,
Shah
,
J. J.
, and
Davison
,
J. K.
, 2003, “
Computer Modeling of Geometric Variations in Mechanical Parts and Assemblies
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
1
), pp.
54
63
.
19.
Nilsson
,
N. J.
, 1980,
Principles of Artificial Intelligence
,
Tioga
, Palo Alto, Calif.
20.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
, 1990, “
AND/OR Graph Representation of Assembly Plans
,”
IEEE Trans. Rob. Autom.
1042-296X, pp.
6
(
2
), pp.
188
199
.
You do not currently have access to this content.