The Kutzbach–Grübler mobility criterion calculates the degrees of freedom of a general mechanism. However, the criterion can break down for mechanisms with special geometries, and in particular, the class of so-called overconstrained parallel mechanisms. The problem is that the criterion treats all constraints as active, even redundant constraints, which do not affect the mechanism degrees of freedom. In this paper we reveal a number of screw systems of a parallel mechanism, explore their inter-relationship and develop an original theoretical framework to relate these screw systems to motion and constraints of a parallel mechanism to identify the platform constraints, mechanism constraints and redundant constraints. The screw system characteristics and relationships are investigated for physical properties and a new approach to mobility analysis is proposed based on decompositions of motion and constraint screw systems. New versions of the mobility criterion are thus presented to eliminate the redundant constraints and accurately predict the platform degrees of freedom. Several examples of overconstrained mechanisms from the literature illustrate the results.

1.
Bricard
,
M. R.
, 1897, “
Memoire sur la theorie de l’octaedre articule
,”
J. Math. Pures Appl.
0021-7824,
LXII
, pp.
113
148
.
2.
Gough
,
V. E.
, and
Whitehall
,
S. G.
, 1961, “
Universal Tire Test Machine
,”
Proceedings of the International Technical Congress FISITA
, May, 1961,
Institution of Mechanical Engineers
, UK, p.
117
.
3.
Stewart
,
D.
, 1965, “
A Platform with Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
0020-3483,
180
, 1965, pp.
371
386
.
4.
Earl
,
C. F.
, and
Rooney
,
J.
, 1983, “
Some Kinematic Structures for Robot Manipulator Design
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
15
22
.
5.
Hunt
,
K. H.
, 1983, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
705
712
.
6.
Mohamed
,
M. G.
, and
Duffy
,
J.
, 1985, “
A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
226
229
.
7.
Fichter
,
E. F.
, 1986, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
0278-3649,
5
, pp.
157
182
.
8.
Waldron
,
K. J.
,
Raghavan
,
M.
, and
Roth
,
B.
, 1989, “
Kinematics of a Hybrid Series-Parallel Manipulation System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
111
, pp.
211
221
.
9.
Gosselin
,
C.
, and
Angeles
,
J.
, 1987, “
The Optimum Kinematic Design of A Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
Proceedings of the 13th ASME Design Automation Conference
, Sept. 1987, Boston, pp.
111
115
.
10.
Gosselin
,
C.
, 1990, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
, pp.
377
82
.
11.
Dai
,
J. S.
,
Sodhi
,
C.
, and
Kerr
,
D. R.
, 1994, “
Design and Analysis of a New Six-Component Force Transducer Based on the Stewart Platform for Robotic Grasping
,”
Proceedings of the Second Biennial European Joint Conference on Engineering Systems Design and Analysis
, ASME PD Vol.
64
, No. 8-3, London, pp.
809
817
.
12.
Kumar
,
V.
, 1992, “
Characterization of Workspaces of Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
114
, pp.
368
375
.
13.
Wang
,
J.
, and
Gosselin
,
C. M.
, 1998, “
Kinematic Analysis of Singularity Loci of Spatial Four-Degree-of-Freedom Parallel Manipulators Using a Vector Formulation
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
555
558
.
14.
Huang
,
Z.
,
Fang
,
Y. F.
, and
Kong
,
L. F.
, 1997,
Theory and Control of Parallel Robotic Mechanisms
, published by
Mechanical Engineering Publisher
, Beijing.
15.
Hervé
,
J. M.
, 1978, “
Analyse Structurelle Des Mecanismes Par Groupe des Deplacements
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
16.
Husain
,
M.
, and
Waldron
,
K. J.
, 1992, “
Position Kinematics of a Mixed Mechanism
,” “
Proceedings of the ASME 22nd Biennial Mechanisms Conference
,” DE-Vol
45
, pp.
41
47
.
17.
Ebert-Uphoff
,
I.
,
Lee
,
J.-K.
, and
Lipkin
,
H.
, 2002, “
Characteristic Tetrahedron of Wrench Singularities for Parallel Manipulators with Three Legs
,”
Chin. J. Mech. Eng.
0577-6686,
216
, pp.
81
93
.
18.
Jin
,
Q.
, and
Yang
,
T.-L.
, 2004, “
Synthesis and Analysis of a Group of 3-Degree-of-Freedom Partially Decoupled Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
301
306
.
19.
Pfreundschuh
,
G. H.
,
Kumar
,
V.
, and
Sugar
,
T. H.
, 1991, “
Design and Control of a Three-Degree-of-Freedom In-Parallel Actuated Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1659
1664
.
20.
Tsai
,
L. W.
, 1996, “
Kinematics of a Three-DOF Platform with Three Extensible Limbs
,” in
Recent Advances in Robot Kinematics
,
J.
Lenarcic
and
V.
Parenti-Castellie
(
Kluwer Academic
, New York, pp.
401
410
.
21.
Huang
,
Z.
,
Fang
,
Y. F.
, and
Fang
,
Y. F.
, 1996, “
Studying on the Kinematic Characteristics of 3-DOF In-Parallel Actuated Platform Mechanisms
,”
Mech. Mach. Theory
0094-114X,
31
, pp.
1009
1018
.
22.
Wang
,
J.
, and
Gosselin
,
C. M.
, 2004, “
Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms with Prismatic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
319
326
.
23.
Badescu
,
M.
, and
Mavroidis
,
C.
, 2004, “
Workspace Optimization of 3-Legged UPU and UPS Parallel Platforms with Joint Constraints
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
291
300
.
24.
Su
,
H.-J.
,
Dietmaier
,
P.
, and
McCarthy
,
J. M.
, 2003, “
Trajectory Planning for Constrained Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
709
716
.
25.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2003, “
A Family of 3-DOF Translational Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
302
307
.
26.
Callegari
,
M.
, and
Tarantini
,
M.
, 2003, “
Kinematic Analysis of a Novel Translational Platform
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
308
315
.
27.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
, Cambridge.
28.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
, London.
29.
Davidson
,
J. K.
, and
Hunt
,
K. H.
, 2004,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
, Oxford.
30.
Agrawal
,
S. K.
, 1991, “
Study of An In-Parallel Mechanism Using Reciprocal Screws
,”
Proceeding of the 8th World Congress on TMM
, Prague, August, pp.
405
408
.
31.
Lee
,
J.
,
Duffy
,
J.
, and
Keler
,
M.
, 1999, “
The Optimum Quality Index for the Stability of In-Parallel Planar Platform Devices
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
15
22
.
32.
Huang
,
Z.
, and
Li
,
Q. C.
, 2002, “
General Methodology for Type Synthesis of Lower-Mobility Symmetrical Parallel Manipulators and Several Novel manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
, pp.
131
145
.
33.
Li
,
Q. C.
, and
Huang
,
Z.
, 2003, “
A Family of Symmetrical Lower-Mobility Parallel Mechanism with Spherical and Parallel Subchains
,”
J. Rob. Syst.
0741-2223,
20
, pp.
297
305
.
34.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
, 2002, “
Geometric Analysis of Overconstrained Parallel Manipulators with Three and Four Degrees of Freedom
,”
JSME Int. J., Ser. C
1340-8062,
45
, pp.
730
740
.
35.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
, 2002, “
Geometric Synthesis of Spatial Parallel Manipulators with Fewer Than Six Degrees of Freedom
,”
J. Mech. Eng. Sci.
0022-2542,
216
, pp.
1175
1186
.
36.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2001, “
Generation of Parallel Manipulators with Three Translational Degrees of Freedom Based on Screw Theory
,”
Proceedings of the 2001 CCToMM Symposium on Mech, Machines and Mechatronics
, Saint-Hubert, Montreal.
37.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
101
108
.
38.
Fang
,
Y.
, and
Tsai
,
L. W.
, 2002, “
Structure Synthesis of a Class of 4-DOF and 5-DOF Parallel Manipulators with Identical Limb Structures
,”
Int. J. Robot. Res.
0278-3649,
21
, pp.
799
810
.
39.
Joshi
,
S. A.
, and
Tsai
,
L. W.
, 2002, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
254
258
.
40.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
, 2003, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms Via Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
573
581
.
41.
Liu
,
G.
,
Lou
,
Y.
, and
Li
,
Z.
, 2003, “
Singularities of Parallel Manipulators: A Geometric Treatment
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
, pp.
579
594
.
42.
Notash
,
L.
, 1998, “
Uncertainty Configurations of Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
33
, pp.
123
138
.
43.
Dasgupata
,
B.
, and
Mruthyunjaya
,
T. S.
, 1998, “
Force Redundancy in Parallel Manipulators. Theoretical and Practical Issues
,”
Mech. Mach. Theory
0094-114X,
33
, pp.
727
742
.
44.
Li
,
Q. C.
, and
Huang
,
Z.
, 2004, “
Mobility Analysis of a Novel 3-5R Parallel Mechanism Family
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
79
82
.
45.
Waldron
,
K. J.
, 1966, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
0022-2569,
1
, pp.
101
114
.
46.
Hunt
,
K. H.
, 1967, “
Screw Axes and Mobility in Spatial Mechanisms Via the Linear Complex
,”
J. Mech.
0022-2569,
2
, pp.
307
327
.
47.
Li
,
Q.
, and
Huang
,
Z.
, 2003, “
Mobility Analysis of Lower-Mobility Parallel Manipulators Based on Screw Theory
,”
Proceedings of the 2003 IEEE International Conference on Robotics & Automation
, Taipei, September 2003.
48.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
375
382
.
49.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q.
, and
Jin
,
G. G.
, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
0094-114X,
39
, 2004, pp.
445
458
.
50.
Dimentberg
,
F. M.
, 1965,
The Screw Calculus and Its Applications in Mechanics
,
Izad
, Nauka, Moscow (in Russian). English translated by Foreign Tech Division, WP-APB, Ohio, 1968.
51.
Waldron
,
K. J.
, 1967, “
A Family of Overconstrained Linkages
,”
J. Mech.
0022-2569,
2
, pp.
201
211
.
52.
Nayak
,
J. H.
, 1979, Ph.D. thesis, Stanford University.
53.
Gibson
,
C. G.
, and
Hunt
,
K. H.
, 1990, “
Geometry of Screw Systems—2, Classification of Screw Systems
,”
Mech. Mach. Theory
0094-114X,
25
, pp.
11
27
.
54.
Rico-Martinez
,
J. M.
, and
Duffy
,
J.
, 1992, “
Classification of Screw Systems—I. One- and Two-Systems
,”
Mech. Mach. Theory
0094-114X,
27
, pp.
459
470
.
55.
Rico-Martinez
,
J. M.
, and
Duffy
,
J.
, 1992, “
Classification of Screw Systems—II. Three-Systems
,”
Mech. Mach. Theory
0094-114X,
27
, pp.
471
490
.
56.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
0094-114X,
36
, pp.
633
651
.
57.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null Space Construction Using Cofactors from a Screw Algebra Context
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
1845
1866
.
58.
Davies
,
T. H.
, and
Primrose
,
E. J. F.
, 1971, “
An Algebra for the Screw Systems of Pairs of Bodies in a Kinematic Chain
,”
Proceedings of the 3rd World Congress for the Theory of Machines and Mechanisms
,
Kupari
, Yugoslavia, 13–20 September 1971, Vol.
D
, pp.
199
212
.
59.
Davies
,
T. H.
, 1981, “
Kirchhoff’s Circulation Law Applied to Multi-Loop Kinematic Chains
,”
Mech. Mach. Theory
0094-114X,
16
, pp.
171
183
.
60.
Davies
,
T. H.
, 1983, “
Mechanical Networks-I, II, and III
,”
Mech. Mach. Theory
0094-114X,
18
, pp.
95
101
, 103–106, 107–112.
61.
Lipkin
,
H.
, and
Duffy
,
J.
, 1985, “
The Elliptic Polarity of Screws
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
377
388
.
62.
Salisbury
,
J. K.
, and
Roth
,
B.
, 1982, “
Kinematic and Force Analysis of Articulated Mechanical Hands
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
33
41
.
63.
Lipkin
,
H.
, 1998,
Sensor-Based Modification of Local Models for Robotic Manipulation
,
NATO ASI Series: CAD Based Programming for Sensory Robots
, edited by
B.
Ravani
Springer-Verlag
, New York, pp.
313
332
.
64.
Birkhoff
,
G.
, and
MacLane
,
S. M.
, 1997,
A Survey of Modern Algebra, 4th Edition
,
Macmillan Publishing Co., Inc.
, New York, Collier Macmillan Publishers, London,
65.
Knuth
,
D. E.
, 1969,
The Art of Computer Programming, Vol. 2, Seminumerical Algorithms
,
Addison-Wesley
, New York.
66.
Kutzbach
,
K.
, 1937, “
Quer-und Winkelbewegliche Gleichganggelenke für Wellenleitungen
,”
Z. VDI.
, Bd. 81, pp.
889
892
.
67.
Hunt
,
K. H.
, 1959,
Mechanisms and Motion
,
The English Universities Press Ltd
, London.
68.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanisms Design
,
John Wiley & Sons
, New York.
69.
Kerr
,
D. R.
, and
Sanger
,
D. J.
, 1987, “
The Synthesis of Point Contact Restraint of a Rigid Body
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
521
525
.
70.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
, 1995, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators with Revolute Joints
,”
J. Mech. Eng. Sci.
0022-2542,
209
, pp.
263
272
.
71.
Li
,
Q. C.
, and
Huang
,
Z.
, 2003, “
Type Synthesis of 4-DOF Parallel Manipulators
,”
IEEE ICRA
, pp.
755
760
.
This content is only available via PDF.
You do not currently have access to this content.