This contribution presents a more general mobility criterion applicable to parallel platforms, unlike previously employed mobility criteria based on the well-known Kutzbach-Grübler criterion that often fails to provide the correct number of degrees of freedom of parallel manipulators, the mobility criterion introduced in this contribution provides the correct number of degrees of freedom for a wider class of parallel manipulators. Furthermore, the analysis provides insight into why the criteria based on the Kutzbach-Grübler criterion often fails. Moreover, the recently developed criterion computes the passive degrees of freedom in parallel platforms and the mobility of some classes of kinematically defficient parallel platforms. Finally, it is important to note that this criterion is based on an analysis of the subalgebras of the Lie algebra, se(3), also known as screw algebra, of the Euclidean group, SE(3). Moreover, it should be emphasized that, unlike other attempts to develop a criterion, the criterion developed in this contribution does not require any consideration of reciprocal screws. As is common in many areas of kinematics, the criterion presented here can be also obtained by an analysis of the subgroups of the Euclidean group.

1.
Grübler
,
M.
, 1885, “
Allgemeine Eigenschaften Der Zwangläufigen Ebenen Kinematische Kette: II
,”
Verein zur Beforderung des Gewerbefleisses, Verhandlungen
,
64
, pp.
179
223
.
2.
Kutzbach
,
K.
, 1933, “
Einzelfragen Aus Dem Gebiet Der Maschinenteile
,”
Zeitschrift der Verein Deutscher Ingenieur
,
77
, pp.
1168
1169
.
3.
Hunt
,
K. H.
, 1990,
Kinematic Geometry of Mechanisms
,
Oxford University Press
, Oxford.
4.
Tsai
,
L. W.
, 2000,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
, Boca Raton, FL.
5.
Kim
,
H. S.
, and
Tsai
,
L. W.
, 2002, “
Evaluation of a Cartesian Parallel Manipulator
,” in
Advances in Robot Kinematics: Theory and Applications
,
Lenarčič
,
J.
and
Thomas
,
F.
, eds., Dordrecht:
Kluwer Academic Publishers
, pp.
21
28
.
6.
Merlet
,
J. P.
, 2000,
Parallel Robots
,
Kluwer Academic Publishers
, Dordrecht.
7.
Rico
,
J. M.
, and
Ravani
,
B.
, 2003, “
On Mobility Analysis of Linkage Using Group Theory
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
70
80
.
8.
Aguilera
,
D.
,
Rico
,
J. M.
, and
Gallardo
,
J.
, 2002, “
Computer Implementation of an Improved Kutzbach-Grübler Criterion
,”
Proceedings of the ASME DETC02 Design Engineering Technical Conferences and Computer and Information on Engineering Conference
,
Montreal
, Canada, Sep. 29–Oct. 2, Paper DETC2002/DAC-34093, Sponsor American Society of Mechanical Engineers.
9.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Ravani
,
B.
, 2003, “
Lie Algebra and the Mobility of Kinematic Chains
,”
J. Rob. Syst.
0741-2223
20
, pp.
477
499
.
10.
Hervé
,
J. M.
, 1978, “
Analyse Structurelle Des MéCanismes Par Groupe Des Déplacements
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
11.
Fanghella
,
P.
, 1988, “
Kinematics of Spatial Linkages by Group Algebra : A Structure-Based Approach
,”
Mech. Mach. Theory
0094-114X,
23
, pp.
171
183
.
12.
Fanghella
,
P.
, and
Galletti
,
C.
, 1995, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
470
478
.
13.
Thomas
,
F.
, and
Torras
,
C.
, 1988, “
A Group-Theoretic Approach to the Computation of Symbolic Part Relations
,”
IEEE J. Rob. Autom.
0882-4967,
4
, pp.
622
634
.
14.
Huang
,
Z.
, and
Li
,
Q. C.
, 2003, “
Type Synthesis of Symmetrical Lower-mobility Parallel Mechanisms Using the Constraint-synthesis Method
,”
Int. J. Robot. Res.
0278-3649,
22
(
1
), pp.
59
79
.
15.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2004, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
, in press.
16.
Aguilera
,
L. D.
, 2003, “
Movilidad de Cadenas Cinemáticas de un Único Lazo y Plataformas Paralelas
,” M. Sc. thesis, Mechanical Engineering Department, Instituto Tecnológico de Celaya, in Spanish.
17.
Tanev
,
T. K.
, 1998, “
Forward Displacement Analysis of a Three-Legged Four-Degree-of-Freedom Parallel-Manipulator
,” in
Advances in Robot Kinematics: Analysis and Control
,
Lenarčič
,
J.
, and
Husty
,
M. L.
, eds.,
Kluwer Academic
, Dordrecht, pp.
147
154
.
18.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2002, “
Singularity-Free Fully-isotropic Translational Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
21
, pp.
161
174
.
19.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2002, “
Singularity-Free Fully-Isotropic Translational Parallel Manipulators
,”
Proceedings of the ASME DETC02 Design Engineering Technical Conferences and Computer and Information on Engineering Conference
,
Montreal
, Canada Sep. 29–Oct. 02, Paper DETC2002/MECH-34301, Sponsor American Society of Mechanical Engineers.
20.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2002, “
Type Synthesis of Linear Translational Parallel Manipulators
,” in
Advances in Robot Kinematics—Theory and Applications
,
Lenarčič
,
J.
, and
Thomas
,
F.
, eds.,
Kluwer Academic
, Dordrecht, pp.
411
420
.
21.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
83
92
.
22.
Hervé
,
J. M.
, 1995, “
Design of Parallel Manipulators Via the Displacement Group
,” in
Proceedings of the Ninth World Congress on the Theory of Machines and Mechanisms
, The International Federation for the Promotion of Mechanism and Machine Science, Cassino, Italy,
3
, pp.
2079
2082
.
23.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2002, “
A Class of 3-DOF Translational Parallel Manipulators With Linear Input-Output Equations
,” in
Proceedings of the Workshop on Fundamental Issues and Research Directions for Parallel Mechanisms and Manipulators
, Quebec City, Quebec, Canada, National Science Foundation and the Ministry of Research, Science and Technology of the Québec Government, Québec, pp.
25
35
.
24.
Rico
,
J. M.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodríguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
, 2004, “
A More General Mobility Criterion for Parallel Platforms
,” in
Proceedings of the ASME DETC04 Design Engineering Technical Conferences and Computer and Information on Engineering Conference
, Salt Lake City, Utah, Sep. 28–Oct.
2
, Paper DETC2004–57064, Sponsor American Society of Mechanical Engineers.
You do not currently have access to this content.