In recent years, it has become well known that rational Bézier and B-spline curves in the space of dual quaternions correspond to rational Bézier and B-spline motions. However, the influence of weights of these dual quaternion curves on the resulting rational motions has been largely unexplored. In this paper, we present a thorough mathematical exposition on the influence of dual-number weights associated with dual quaternions for rational motion design. By deriving the explicit equations for the point trajectories of the resulting motion, we show that the effect of real weights on the resulting motion is similar to that of a rational Bézier curve and how the change in dual part of a dual-number weight affects the translational component of the motion. We also show that a rational Bézier motion can be reparameterized in a manner similar to a rational Bézier curve. Several examples are presented to illustrate the effects of the weights on rational motions.

1.
Farin
,
G.
, 1995,
Nurbs Curves and Surfaces: From Projective Geometry to Practical Use
,
A. K. Peters
.
2.
Farin
,
G.
, 1996,
Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide
, 4th ed.,
Academic
, New York.
3.
Hoschek
,
J.
, and
Lasser
,
D.
, 1993,
Fundamentals of Computer Aided Geometric Design
,
A. K. Peters
.
4.
Piegl
,
L.
, and
Tiller
,
W.
, 1995,
The Nurbs Book
,
Springer
.
5.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1993, “
Computational Geometry and Motion Approximation
,”
Computational Kinematics
,
J.
Angeles
, eds. et al.
,
KAP
.
6.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Computer-Aided Geometric Design of Motion Interpolants
,”
J. Mech. Des.
1050-0472,
116
(
3
), pp.
756
762
.
7.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Geometric Construction of Bezier Motions
,”
J. Mech. Des.
1050-0472,
116
(
3
), pp.
749
755
.
8.
Shoemake
,
K.
, 1985, “
Animating Rotation with Quaternion Curves
,” in
Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques
,
ACM press
, pp.
245
254
.
9.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
, Amsterdam.
10.
Juttler
,
B.
, 1994, “
Visualization of Moving-Objects Using Dual Quaternion Curves
,”
Comput. Graph.
0097-8930,
18
(
3
), pp.
315
326
.
11.
Juttler
,
B.
, and
Wagner
,
M. G.
, 1996, “
Computer-Aided Design with Spatial Rational B-Spline Motions
,”
J. Mech. Des.
1050-0472,
118
(
2
), pp.
193
201
.
12.
Wagner
,
M. G.
, 1994, “
A Geometric Approach to Motion Design
,” Ph.D. dissertation, Technische Universität, Wien.
13.
Wagner
,
M. G.
, 1995, “
Planar Rational B-Spline Motions
,”
Comput.-Aided Des.
0010-4485,
27
(
2
), pp.
129
137
.
14.
Park
,
F. C.
, and
Ravani
,
B.
, 1995, “
Bezier Curves on Riemannian-Manifolds and Lie-Groups with Kinematics Applications
,”
J. Mech. Des.
1050-0472,
117
(
1
), pp.
36
40
.
15.
Zefran
,
M.
, and
Kumar
,
V.
, 1998, “
Interpolation Schemes for Rigid Body Motions
,”
Comput.-Aided Des.
0010-4485,
30
(
3
), pp.
179
189
.
16.
Zefran
,
M.
,
Kumar
,
V.
, and
Croke
,
C. B.
, 1998, “
On the Generation of Smooth Three-Dimensional Rigid Body Motions
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
4
), pp.
576
589
.
17.
Etzel
,
K. R.
, and
McCarthy
,
J. M.
, 1999, “
Interpolation of Spatial Displacements Using the Clifford Algebra of E4
,”
J. Mech. Des.
1050-0472,
121
(
1
), pp.
39
44
.
18.
Mullineux
,
G.
, 2004, “
Modeling Spatial Displacements Using Clifford Algebra
,”
J. Mech. Des.
1050-0472,
126
(
3
), pp.
420
424
.
19.
Eberharter
,
J. K.
, and
Ravani
,
B.
, 2004, “
Local Metrics for Rigid Body Displacements
,”
J. Mech. Des.
1050-0472,
126
(
5
), pp.
805
812
.
20.
Rossignac
,
J. R.
, and
Kim
,
J. J.
, 2001, “
Computing and Visualizing Pose-Interpolating 3d Motions
,”
Comput.-Aided Des.
0010-4485,
33
(
4
), pp.
279
291
.
21.
Roschel
,
O.
, 1998, “
Rational Motion Design—a Survey
,”
Comput.-Aided Des.
0010-4485,
30
(
3
), pp.
169
178
.
22.
Jüttler
,
B.
, and
Wagner
,
M.
, 2002, “
Kinematics and Animation
,”
Handbook of Computer Aided Geometric Design
, eds. et al.,
Elsevier
, New York.
23.
J.
,
P. F.
, 1984, “
A Note on Rotation Matrices
,”
IEEE Comput. Graphics Appl.
0272-1716,
4
(
2
), pp.
30
33
.
24.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT
.
25.
Study
,
E.
, 1903,
Die Geometrie Der Dynamen
,
Verlag Teubner
.
26.
Ravani
,
B.
, and
Roth
,
B.
, 1984, “
Mappings of Spatial Kinematics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
106
(
3
), pp.
341
347
.
27.
Hsia
,
L. M.
, and
Yang
,
A. T.
, 1981, “
On the Principle of Transference in Three-Dimensional Kinematics
,”
ASME J. Mech. Des.
0161-8458,
103
(
3
), pp.
652
656
.
28.
Ge
,
Q. J.
, and
Sirchia
,
M.
, 1999, “
Computer Aided Geometric Design of Two-Parameter Freeform Motions
,”
J. Mech. Des.
1050-0472,
121
(
4
), pp.
502
506
.
29.
Patterson
,
R. R.
, 1985, “
Projective Transformations of the Parameter of a Bernstein-Bezier Curve
,”
ACM Trans. Graphics
0730-0301,
4
(
4
), pp.
276
290
.
You do not currently have access to this content.