A monolithic compliant mechanism transmits applied forces from specified input ports to output ports by elastic deformation of its comprising materials, fulfilling required functions analogous to a rigid-body mechanism. In this paper, we propose a level-set method for designing monolithic compliant mechanisms made of multiple materials as an optimization of continuum heterogeneous structures. Central to the method is a multiphase level-set model that precisely specifies the distinct material regions and their sharp interfaces as well as the geometric boundary of the structure. Combined with the classical shape derivatives, the level-set method yields an Eulerian computational system of geometric partial differential equations, capable of performing topological changes and capturing geometric evolutions at the interface and the boundary. The proposed method is demonstrated for single-input and single-output mechanisms and illustrated with several two-dimensional examples of synthesis of multimaterial mechanisms of force inverters and gripping and clamping devices. An analysis on the formation of de facto hinges is presented based on the shape gradient information. A scheme to ensure a well-connected topology of the mechanism during the process of optimization is also presented.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
, New York.
2.
Burns
,
R. H.
, and
Crossley
,
F.
, 1966, “
Structural Permutations of Flexible Link Mechanisms
,” ASME Paper No. 66-Mech-5.
3.
Her
,
I.
, and
Midha
,
A.
, 1987, “
Compliance Number Concept for Compliant Mechanism and Type Synthesis
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
(
3
), pp.
348
355
.
4.
Murphy
,
M. D.
,
Midha
,
A.
, and
Howell
,
L. L.
, 1994, “
The Topological Synthesis of Compliant Mechanisms
,”
Machine Elements and Machine Dynamics
, DE-Vol.
71
Proc. of 23rd ASME Mechanisms Conference
, pp. 481–489.
5.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
118
, pp.
121
125
.
6.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 1994, “
Strategies for Systematic Synthesis of Compliant MENS
,”
Proc. of 1994 ASME Winter Annual Meeting, Dynamic Systems and Control Division
, Chicago,
ASME
, New York, pp.
677
686
.
7.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472
119
(
2
), pp.
238
245
.
8.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452
25
(
4
), pp.
493
524
.
9.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
1057-7157
6
(
2
), pp.
99
106
.
10.
Nishwaki
,
N.
,
et al.
, 1998, “
Design Optimization Method for Compliant Mechanisms and Material Microstructure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
151
, pp.
401
417
.
11.
Nishwaki
,
N.
,
et al.
, 2001, “
Optimal Structural Design Considering Flexibility
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4457
4504
.
12.
Lau
,
G. K.
,
Du
,
H.
, and
Lim
,
M. K.
, 2001, “
Use of Functional Specifications as Objective Functions in Topological Optimization of Compliant Mechanism
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
4421
4433
.
13.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2750
.
14.
Duysinx
,
P.
, and
Bendsoe
,
O.
, 1998, “
Topology Optimization of Continuum Structures with Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
(
2
), pp.
1453
1478
.
15.
Saxensa
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
J. Mech. Des.
1050-0472, ,
123
, pp.
33
42
.
16.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization-Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49-50
), pp.
6605
6627
.
17.
Ananthasuresh
,
G. K.
, and
Yin
,
L.
, 2002, “
A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms
,”
Sens. Actuators, A
0924-4247, ,
97-98
, pp.
599
609
.
18.
Silva
,
E.
,
Nishiwaki
,
S.
,
Fonseca
,
J.
, and
Kikuchi
,
N.
, 1999, “
Optimization Methods Applied to Material and Flextensional Actuator Designed Using the Homogenization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
172
, pp.
241
271
.
19.
Chen
,
B. C.
,
Silva
,
E.
, and
Kikuchi
,
N.
, 2001, “
Advances in Computational Design and Optimization With Application to MEMS
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
, pp.
23
62
.
20.
Poulsen
,
T. A.
, 2002, “
A Simple Scheme to Prevent Checkerboard Pattern and One-Node Connected Hinges in Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
396
399
.
21.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
741
760
.
22.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Multiple Material Using Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
49
62
.
23.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mechanics Based Design of Structures and Machines
,
31
(
2
), pp.
151
179
.
24.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2004,
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,
Int. J. Numer. Methods Eng.
0029-5981, , Submitted.
25.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenisation Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
26.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, 1999 “
Material Interpolations in Topology Optimization
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
635
654
.
27.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods and Applications
,
Springer
, Berlin.
28.
Bendsoe
,
M. P.
, 1999,
Variable-Topology Optimization: Status and Challenges
, in
Proc. of European Conf. on Computational Mechanics (ECCM’99)
,
W.
Wunderlich
(ed.), Munich, Germany, September.
29.
De Ruiter
,
M. J.
, and
Van Keulen
,
F.
, 2000, “
Topology Optimization: Approaching the Material Distribution Problem Using a Topological Function Description
,” in
Computational Techniques for Materials, Composites and Composite Structures
,
B.
Topping
(Ed.),
Civil-Comp Press
, Edinburgh, UK, pp.
111
119
.
30.
Sigmund
,
O.
, and
Petersson
,
J.
, 1998, “
Numerical Instabilities in Topology Optimization: a Survey on Procedures Dealing with Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
0934-4373,
16
(
1
), pp.
68
75
.
31.
Osher
,
S.
, and
Sethian
,
J. A.
, 1988, “
Front Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
0021-9991,
79
, pp.
12
49
.
32.
Osher
,
S.
, and
Santosa
,
F.
, 2001, “
Level Set Methods for Optimization Problems Involving Geometry and Constrains I: Frequencies of a Two-Density Inhomogeneous Drum
,”
J. Comput. Phys.
0021-9991,
171
, pp.
272
288
.
33.
Sethian
,
J. A.
, and
Wiegmann
,
A.
, 2000, “
Structural Boundary Design via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
0021-9991,
163
(
2
), pp.
489
528
.
34.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
1
), pp.
227
246
.
35.
Allaire
,
G.
,
Jouve
,
F.
, and
Taoder
,
A. M.
, 2004, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
0021-9991,
194
, pp.
363
393
.
36.
Wang
,
X.
,
Wang
,
M. Y.
, and
Guo
,
D.
, 2004, “
Structural Shape and Topology Optimization in a Level-Set Framework of Region Representation
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
1
19
.
37.
Wang
,
M. Y.
, and
Wang
,
X.
, 2005, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput.-Aided Des.
0010-4485,
37
(
3
), pp.
321
337
.
38.
Moon
,
G. H.
,
Kim
,
Y. Y.
,
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, 2004, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differential Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
139
150
.
39.
Saxensa
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
36
49
.
40.
Sigmund
,
O.
, 2000, “
Topology Optimization: A Tool for the Tailoring of Structures and Materials
,”
Philos. Trans. R. Soc. London
0962-8428, ,
358
, pp.
211
228
.
41.
Osher
,
S.
, and
Fedkiw
,
R.
, 2003,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
, New York.
42.
Wang
,
M. Y.
, and
Wang
,
X.
, 2004, “
‘Color’ Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
6-8
), pp.
469
496
.
43.
Vese
,
L. A.
, and
Chan
,
T. F.
, 2002, “
A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model
,”
Int. J. Comput. Vis.
0920-5691,
50
(
3
), pp.
271
293
.
44.
Haug
,
E. J.
,
Choi
,
K. K.
, and
Komkov
,
V.
, 1986,
Design Sensitivity Analysis of Structural Systems
,
Academic Press
, Orlando.
45.
Mei
,
Y. L.
, 2004, “
A Level Set Method for Topological Optimization and its Application in Stiff Structures, Compliant Mechanisms and Material Designs
” Ph.D. thesis, Dalian University of Technology, Dalian, China.
46.
Sethian
,
J. A.
, 1999,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
, Cambridge, UK.
47.
Peng
,
D.
,
et al.
, 1999, “
A PED-Based Fast Local Level Set Method
,”
J. Comput. Phys.
0021-9991,
155
, pp.
410
438
.
48.
Kong
,
T. Y.
, and
Rosenfeld
,
A.
, 1989, “
Digital Topology: Introduction and Survey
,”
Comput. Vis. Graph. Image Process.
0734-189X,
48
, pp.
357
393
.
49.
Sokolowski
,
J.
, and
Zochowski
,
A.
, 1999, “
On the Topological Derivative in Shape Optimization
,”
SIAM J. Control Optim.
0363-0129,
37
, pp.
1251
1272
.
50.
Wang
,
X.
,
Mei
,
Y.
, and
Wang
,
M. Y.
, 2004, “
Combining Topological Derivatives With Level Set Methods for Topology Optimization
,” in
Proc. of 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Troy, NY.
51.
Kumar
,
A. V.
, and
Grossard
,
D. C.
, 1996, “
Synthesis of Optimal Shape and Topology of Structures
,”
J. Mech. Des.
1050-0472, ,
118
, pp.
68
74
.
You do not currently have access to this content.