We present a robust optimization method that ensures feasibility of an optimized design when there are uncontrollable variations in design parameters. This method is developed based on the notion of a sensitivity region, which is a measure of how far a feasible design is from the boundary of a feasible domain in the parameter variation space. In this method, as the design moves further inside the feasible domain, and thus becoming more feasibly robust, the sensitivity region becomes larger. Our method is not sampling based so it does not require a presumed probability distribution as input and is reasonably efficient in terms of function evaluations. In addition, our method does not use gradient approximation and thus is applicable to problems that have nondifferentiable constraint functions and large parameter variations. As a demonstration, we applied our method to an engineering example, the design of a control valve actuator linkage. In this example, we show that our method finds an optimum design which is feasibly robust.

1.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design: Modeling and Computation
,
2nd ed.
,
Cambridge University Press
, New York.
2.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
74
80
.
3.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
478
485
.
4.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
, 2001, “
A Comprehensive Robust Design Approach for Decision Tradeoffs in Complex Systems Design
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
1
10
.
5.
Ramakrishnan
,
B.
, and
Rao
,
S. S.
, 1991, “
A Robust Optimization Approach Using Taguchi’s Loss Function for Solving Nonlinear Optimization Problems
,” Adv. Design Automation, ASME DE-32-1, pp.
241
248
.
6.
Sundaresan
,
S.
,
Ishii
,
K.
, and
Houser
,
D. R.
, 1992, “
Design Optimization for Robustness Using Performance Simulation Programs
,”
Eng. Optimiz.
0305-215X,
20
, pp.
163
178
.
7.
Belegundu
,
A. D.
, and
Zhang
,
S.
, 1992, “
Robustness of Design Through Minimum Sensitivity
,”
ASME J. Mech. Des.
1050-0472,
114
, pp.
213
217
.
8.
Zhu
,
J.
, and
Ting
,
K. L.
, 2001, “
Performance Distribution Analysis and Robust Design
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
11
17
.
9.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
Nongradient Based Parameter Sensitivity Estimation for Robust Optimization
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
395
402
.
10.
Balling
,
R. J.
,
Free
,
J. C.
, and
Parkinson
,
A. R.
, 1986, “
Consideration of Worst-Case Manufacturing Tolerances in Design Optimization
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
438
441
.
11.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1993, “
Tuning Parameters in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
14
19
.
12.
Rao
,
S. S.
, and
Cao
,
L.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
465
472
.
13.
Wu
,
W.
, and
Rao
,
S. S.
, 2004, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
581
592
.
14.
Taguchi
,
G.
,
Elsayed
,
E.
, and
Hsiang
,
T.
, 1989,
Quality Engineering in Production Systems
,
McGraw-Hill
, New York.
15.
Hwang
,
K. H.
,
Lee
,
K. W.
, and
Park
,
G. J.
, 2001, “
Robust Optimization of an Automobile Rearview Mirror for Vibration Reduction
,”
Struct. Multidiscip. Optim.
1615-147X,
21
, pp.
300
308
.
16.
Sundaresan
,
S.
,
Ishii
,
K.
, and
Houser
,
D. R.
, 1993, “
A Robust Optimization Procedure with Variations on Design Variables and Constraints
,”
Adv. Design Auto.
,
1
, pp.
379
386
.
17.
Charnes
,
A.
, and
Cooper
,
W. W.
, 1959, “
Chance-Constrained Programming
,”
Manage. Sci.
0025-1909,
6
, pp.
73
79
.
18.
Charnes
,
A.
, and
Cooper
,
W. W.
, 1963, “
Deterministic Equivalents for Optimizing and Satisficing Under Chance Constraints
,”
Oper. Res.
0030-364X,
11
, pp.
18
39
.
19.
Hirokawa
,
N.
, and
Fujita
,
K.
, 2002, “
Min-Max Type Formulation of Strict Robust Design Optimization Under Correlative Variation
,” Paper No. DAC-34041,
CD-ROM Proc. of the ASME IDETC
, Sept. 29–Oct. 2, Montreal, Canada.
20.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
, pp.
1663
1669
.
21.
Jung
,
D. H.
, and
Lee
,
B. C.
, 2002, “
Development of a Simple and Efficient Method for Robust Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
2201
2215
.
22.
Yu
,
J. C.
, and
Ishii
,
K.
, 1998, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
196
202
.
23.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
557
564
.
24.
Choi
,
K. K.
,
Tu
,
J.
, and
Park
,
Y. H.
, 2001, “
Extensions of Design Potential Concept for Reliability-Based Design Optimization to Nonsmooth and Extreme Cases
,”
Struct. Multidiscip. Optim.
1615-147X,
22
, pp.
335
350
.
25.
Choi
,
K. K.
, and
Youn
,
B. D.
, 2002, “
On Probabilistic Approaches for Reliability-Based Design Optimization (RBDO)
,”
AIAA-2002-5472, Proceedings of the ninth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Sept.4–6, Atlanta, GA.
26.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
221
232
.
27.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
562
570
.
28.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
225
233
.
29.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
403
411
.
30.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
385
394
.
You do not currently have access to this content.