Metamorphic mechanisms form a class of mechanisms that has the facilities to change configuration from one kind to another with a resultant change in the number of effective links and mobility of movement. This paper develops formal matrix operations to describe the distinct topology of configurations found in a metamorphic mechanism and to complete transformation between them. A new way is hence introduced for modeling topological changes of metamorphic mechanisms in general. It introduces a new elimination E-elementary matrix together with a U-elementary matrix to form an EU-elementary matrix operation to produce the configuration transformation. The use of these matrix operations is demonstrated in both spherical and spatial metamorphic mechanisms, the mechanistic models taken from the industrial packaging operations of carton folding manipulation that stimulated this study.

1.
Soroka
,
W.
, 1996,
Fundamentals of Packaging Technology
, edited by
A.
Emblem
and
H.
Emblem
,
Institution of Packaging
, London.
2.
Grignon
,
P. M.
, and
Fadel
,
G. M.
, 2004, “
A GA Based Configuration Design Optimization Method
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
6
15
.
3.
Cundy
,
H. M.
, and
Rollett
,
A. P.
, 1951,
Mathematical Models
,
Tarquin Publications
.
4.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1997, “
Structure and Mobility of Cartons in a Packaging Process
,” Science and Technology Report, PS 970067, Unilever Research.
5.
Liu
,
H.
, and
Dai
,
J. S.
, 2002, “
Carton Manipulation Analysis Using Configuration Transformation
,”
J. Mech. Eng. Sci.
0022-2542,
216
(
C5
), pp.
543
555
.
6.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1998, “
Mobility in Metamorphic Mechanisms of Foldable∕Erectable Kinds
,”
Proceedings of 25th ASME Biennial Mechanisms Conference
,
Atlanta
[also in
ASME J. Mech. Des.
1050-0472,
121
(
3
), 1999, pp.
375
382
.]
7.
DasGupta
,
A.
, 2004, “
Mobility Analysis of a Class of RPSPR Kinematic Chains
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
71
78
.
8.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkage
,
Springer-Verlag
, New York.
9.
Roach
,
G. M.
, and
Howell
,
L. L.
, 2002, “
Evaluation and Comparison of Alternative Compliant Overrunning Clutch Designs
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
485
491
.
10.
Baker
,
J. E.
, 2004, “
The Closure Modes of Bennett’s Twelve-Bar Planar Linkage
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
464
469
.
11.
Pennock
,
G. R.
, and
Kinzel
,
E. C.
, 2004, “
Path Curvature of the Single Flier Eight-Bar Linkage
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
470
477
.
12.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Structural Mobility
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
234
243
.
13.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Maximum Structural Strength and Mobility
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
244
253
.
14.
Rico Martinez
,
J. M.
, and
Ravani
,
B.
, 2003, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
70
80
.
15.
Jin
,
Q.
, and
Yang
,
T.-L.
, 2004, “
Synthesis and Analysis of a Group of 3-Degree-of-Freedom Partially Decoupled Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
301
306
.
16.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Configuration Transformations in Metamorphic Mechanisms of Foldable∕Erectable Kinds
,”
Proceedings of 10th World Congress on the Theory of Machines and Mechanisms
, Vol.
2
, Oulu, Finland, pp.
542
547
.
17.
Strang
,
G.
, 1980,
Linear Algebra and Its Applications
,
2nd Ed.
,
Academic
, New York.
18.
Gillie
,
A. C.
, 1965,
Binary Arithmetic and Boolean Algebra
,
McGraw-Hill
, New York.
19.
Balli
,
S. S.
, and
Chand
,
S.
, 2004, “
Synthesis of a Five-Bar Mechanism of Variable Topology Type With Transmission Angle Control
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
128
134
.
20.
Ekiguchi
,
K.
, 1988,
The Book of Boxes
,
Kodansha International
, New York.
21.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation
,”
J. Mech. Eng. Sci.
0022-2542,
216
(
C10
), pp.
959
970
.
22.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
, 1978,
Kinematics and Mechanisms Design
,
Wiley
, New York.
23.
Waldron
,
K. J.
, 1966, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
0022-2569,
1
, pp.
101
114
.
24.
Hunt
,
K.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
, Oxford.
25.
Li
,
Q. C.
, and
Huang
,
Z.
, 2004, “
Mobility Analysis of a Novel 3-5R Parallel Mechanism Family
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
79
82
.
26.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
0094-114X,
36
(
5
), pp.
633
651
.
27.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null Space Construction Using Cofactors from a Screw Algebra Context
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
(
2024
), pp.
1845
1866
.
28.
Lee
,
C.-C.
, and
Herve
,
J. M.
, 2002, “
Discontinuous Mobility of One Family of Spatial 6R Mechanisms Through the Group Algebraic Structure of Displacement
,”
27th ASME Biennial Mechanisms and Robotics Conference
, Montreal, Canada, 29 Sept.–2 Oct.
You do not currently have access to this content.