This paper presents systematic modeling and design of an optically powered piezoelectric microactuator for driving a microfluidic dispenser that could find a potential application in a retinal prosthesis. The first part of the paper treats a microactuator system comprised of a micron-scale piezoelectric unimorph integrated with a miniaturized solid-state solar cell. The microactuator design is tailored for driving a microfluidic dispenser to dispense a stored liquid chemical through its micron-sized outlet ports at a rate of about 1pls when the integrated solar cell is irradiated by light at a power density of 3Wm2, corresponding to the requirements of the potential application. The microactuator system design is accomplished by first obtaining analytical models for the solar cell characteristic behavior and the microactuator displacements and then combining them to obtain the key dimensions of the microactuator through a design optimization. An analysis of the performance characteristics of the microactuator and a finite element analysis validating the analytical model for the microactuator’s displacements and the peak stresses under the operating loads are presented. The latter part of the paper presents a design of a microfluidic dispenser utilizing the optically powered microactuator and satisfying the desired input/output requirements. An analytical model integrating various energy domains involved in the system, viz. opto-electrical, piezoelectric, mechanical and hydraulic, is derived for the liquid flow through the dispenser’s micron-sized outlet ports. Finally, the energetic feasibility of the microactuator design obtained for the specified input and output criteria is also discussed.

1.
Poosanaas
,
P.
,
Tonooka
,
K.
, and
Uchino
,
K.
, 2000, “
Photostrictive actuators
,”
Mechatronics
0957-4158,
10
(
1-5
), pp.
467
487
.
2.
McKenzie
,
J. S.
,
Clark
,
C.
,
Jones
,
B. E.
, and
Jacobs-Cook
,
A. J.
, 1995, “
Design and construction of a multiple-wafer integrated micromechanical optical actuator
,”
Sens. Actuators, A
0924-4247,
47
(
1-3
), pp.
566
571
.
3.
Sakakibara
,
T.
,
Izu
,
H.
,
Kura
,
T.
,
Shinohara
,
W.
,
Iwata
,
H.
,
Kiyama
,
S.
, and
Tsuda
,
S.
, 1995, “
High-voltage photovoltaic micro-devices fabricated by a new laser-processing
,”
Proceedings of the 8th IEEE Micro Electro Mechanical Systems Conference
, Jan. 29–Feb. 2, Amsterdam, Netherlands, pp.
282
287
.
4.
Lee
,
J. B.
,
Chen
,
Z.
,
Allen
,
M. G.
,
Rohatgi
,
A.
, and
Arya
,
R.
, 1995, “
Miniaturized high-voltage solar cell array as an electrostatic MEMS power supply
,”
J. Microelectromech. Syst.
1057-7157,
4
(
3
), pp.
102
108
.
5.
Hollar
,
S.
,
Flynn
,
A.
,
Bellew
,
C.
, and
Pister
,
K. S. J.
, “
Solar powered 10 mg silicon robot
,”
Proceedings of the 16th IEEE International Conference on Micro Electro Mechanical Systems
, Kyoto, Japan, pp.
706
711
.
6.
Shinshi
,
T.
,
Kato
,
F.
,
Shimokohbe
,
A.
,
Noguchi
,
H.
, and
Munekata
,
H.
, 2003, “
Light-driven microcantilever actuator based on photoenhanced magnetization in a GaAs–Fe composite film
,”
Appl. Phys. Lett.
0003-6951,
83
(
16
), pp.
3425
3427
.
7.
Knopf
,
G. K.
, 2004, “
Optically driven shape memory alloy microactuators
,”
Proc. SPIE Int. Soc. Opt. Eng.
,
Intelligent Manufacturing
, Oct. 29–30, 2003, Providence, RI,
5263
, pp.
22
29
.
8.
Margalit
,
E.
,
Maia
,
M.
,
Weiland
,
J. D.
,
Greenberg
,
R. J.
,
Fujii
,
G. Y.
,
Torres
,
G.
,
Piyathaisere
,
D. V.
,
O’Hearn
,
T. M.
,
Liu
,
W.
,
Lazzi
,
G.
,
Dagnelie
,
G.
,
Scribner
,
D. A.
,
De Juan
,
E.
, and
Humayun
,
M. S.
, 2002, “
Retinal Prosthesis for the Blind
,”
Surv. Ophthalmol.
0039-6257,
47
(
4
), p.
335
.
9.
Deshpande
,
M.
, and
Saggere
,
L.
, 2004, “
Light driven actuation of fluids at microscale
,”
Proc. SPIE Int. Soc. Opt. Eng., Smart Electronics, MEMS, BIOMEMS, and Nanotechnology
, March 14–18, San Diego, CA,
5389
, pp.
286
397
.
10.
Cochoy
,
O.
, 2003, “
Design and assesment of a microfluidic dispenser for chronic chemical stimulation of retinal neurons
,” Master’s Thesis, Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL, (Advisor: Prof. Saggere).
11.
ASTM G159-98 ed., “
Standard Tables for References Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37° Tilted Surface
,” ASTM International.
12.
Castañer
,
L.
, and
Silvestre
,
S.
, 2002,
Modelling Photovoltaic Systems Using PSpice
,
Wiley
, Hoboken, NJ.
13.
Lasnier
,
F.
, and
Gan Ang
,
T.
, 1990,
Photovoltaic Engineering Handbook
,
A. Hilger
, New York.
14.
Goswami
,
D. Y.
,
Kreith
,
F.
, and
Kreider
,
J. F.
, 2000,
Principles of Solar Engineering
,
Taylor & Francis
, Philadelphia, PA, p.
421
.
15.
Partain
,
L. D.
, 1995,
Solar Cells and their Applications
,
Wiley
, New York, p.
8
.
16.
Noel
,
S.
,
Lautenschlager
,
H.
, and
Muller
,
J. C.
, 2000, “
Rapid thermal processing for high efficiency silicon solar cells
,”
Semicond. Sci. Technol.
0268-1242,
15
(
4
), p.
322
.
17.
Muralt
,
P.
, 2000, “
Ferroelectric thin films for micro-sensors and actuators: a review
,”
J. Micromech. Microeng.
0960-1317,
10
(
2
), pp.
136
146
.
18.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates: Theory and Analysis
,
CRC Press
, Boca Raton.
19.
Jones
,
R. M.
, 1999,
Mechanics of Composite Materials
,
Taylor & Francis
, Philadelphia, PA.
20.
Polcawich
,
R. G.
,
Moses
,
P. J.
, and
Trolier-McKinstry
,
S.
, “
AC and DC electrical stress reliability of Piezoelectric Lead Zirconate Titanate (PZT) thin films
,”
Proceedings of the 1999 International Symposium on Microelectronics
,
3906
, pp.
227
232
.
21.
Zhao
,
M.-H.
,
Fu
,
R.
,
Lu
,
D.
, and
Zhang
,
T.-Y.
, 2002, “
Critical thickness for cracking of Pb( Zr0.53 Ti0.47 )O3 thin films deposited on Pt/Ti/Si(100) substrates
,”
Acta Mater.
1359-6454,
50
(
17
), pp.
4241
4254
.
22.
Bahr
,
D. F.
,
Merlino
,
J. C.
,
Banerjee
,
P.
,
Yip
,
C. M.
, and
Bandyopadhyay
,
A.
, 1998, “
Reliability and properties of PZT thin films for MEMS applications
,”
Proceedings of the 1998 MRS Fall Meeting—Symposium AA, Materials Science of Microelectromechanical Systems (MEMS)
, Dec. 1–Dec. 2
546
, pp.
153
158
.
23.
Yi
,
T.
,
Li
,
L.
, and
Kim
,
C.-J.
, 2000, “
Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength
,”
Sens. Actuators, A
0924-4247,
83
(
1‐3
), pp.
172
178
.
24.
Brantley
,
W. A.
, 1973, “
Calculated elastic constants for stress problems associated with semiconductor devices
,”
J. Appl. Phys.
0021-8979,
44
, pp.
534
535
.
25.
Murarka
,
S. P.
, 1993,
Metallization: Theory and Practice for VLSI and ULSI
,
Butterworth-Heinemann
, Stoneham, MA, p.
19
.
26.
Zhou
,
J.
,
McMcollough
,
T.
,
Mantell
,
S. C.
, and
Zurn
,
S.
, “
Young’s modulus measurement of thin film PZT
,”
Proceedings of the 1999 13th Biennial University/Goverment/Industry Microelectronics Symposium (UGIM)
, pp.
153
157
.
27.
Delobelle
,
P.
,
Guillon
,
O.
,
Fribourg-Blanc
,
E.
,
Soyer
,
C.
,
Cattan
,
E.
, and
Remiens
,
D.
, 2004, “
True Young modulus of Pb(Zr, Ti)O3 films measured by nanoindentation
,”
Appl. Phys. Lett.
0003-6951,
85
(
22
), pp.
5185
5187
.
28.
Muralt
,
P.
, 2000, “
PZT thin films for microsensors and actuators: Where do we stand?
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
47
(
4
), pp.
903
915
.
29.
Lefki
,
K.
, and
Dormans
,
G. J. M.
, 1994, “
Measurement of piezoelectric coefficients of ferroelectric thin films
,”
J. Appl. Phys.
0021-8979,
76
(
3
), pp.
1764
1767
.
30.
Shepard
,
J. F.
, Jr.
,
Moses
,
P. J.
, and
Trolier-McKinstry
,
S.
, 1998, “
The Wafer Flexure Technique for the Determination of the Transverse Piezoelectric Coefficient (d31) of PZT Thin Films
,”
Sens. Actuators, A
0924-4247,
71
(
1-2
), pp.
133
138
.
31.
Ledermann
,
N.
,
Muralt
,
P.
,
Baborowski
,
J.
,
Gentil
,
S.
,
Mukati
,
K.
,
Cantoni
,
M.
,
Seifert
,
A.
, and
Setter
,
N.
, 2003, “
{1 0 0}-Textured, piezoelectric Pb( Zrx , Ti1−x )O3 thin films for MEMS: integration, deposition and properties
,”
Sens. Actuators, A
0924-4247,
105
(
2
), pp.
162
170
.
32.
Kanno
,
I.
,
Fujii
,
S.
,
Kamada
,
T.
, and
Takayama
,
R.
, 1997, “
Piezoelectric properties of c-axis oriented Pb(Zr, Ti)O3 thin films
,”
Appl. Phys. Lett.
0003-6951,
70
(
11
), pp.
1378
1380
.
33.
Uchino
,
K.
, 1997,
Piezoelectric Actuators and Ultrasonic Motors
,
Kluwer Academic Publishers
, Boston, MA.
34.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of frictional pressure drop for liquid flows through microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
17
), pp.
3477
3489
.
35.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
, 2002,
Fundamentals of fluid mechanics
,
Wiley
, New York.
36.
Ikeda
,
T.
, 1996,
Fundamentals of Piezoelectricity
,
Oxford University Press
, New York, p.
18
.
37.
Xu
,
B.
,
Ooi
,
K. T.
,
Wong
,
N. T.
, and
Choi
,
W. K.
, 2000, “
Experimental investigation of flow friction for liquid flow in microchannels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
8
), pp.
1165
1176
.
38.
Papautsky
,
I.
,
Gale
,
B. K.
,
Mohanty
,
S.
,
Ameel
,
T. A.
, and
Frazier
,
A. B.
, 1999, “
Effects of rectangular microchannel aspect ratio on laminar friction constant
,”
Proceedings of the 1999 Microfluidic Devices and Systems II
, Sep. 20–Sep. 21,
3877
, pp.
147
158
.
You do not currently have access to this content.