Nanomachines are devices that are in the size range of billionths of meters (109m) and therefore are built necessarily from individual atoms. These devices will have intrinsic mobilities that result in their geometry change and hence enable them to perform specific functions. Futuristic scholars and researchers believe that nanodevices will one day be used as “assemblers” in the construction of new materials and objects from inside out (1); They will be able to “self replicate;” They will be able to enter biological cells to cure disease; They will be able to facilitate space travel; They will be used to clean up the environment; They will be the building blocks of the electronic circuitry and computers (2). While these claims may prompt profound philosophical and scientific debates for many years to come, they...

1.
Merkle
,
R. C.
, 1996, “
Design Considerations For an Assembler
, ”
Nanotechnology
0957-4484,
7
, pp.
210
215
.
2.
Merkle
,
R. C.
, 2000, “
Molecular Building Blocks and Development Strategies For Molecular Nanotechnology
,”
Nanotechnology
0957-4484,
11
, pp.
89
99
.
3.
Mavroidis
,
C.
,
Dubey
,
A.
, and
Yarmush
,
M.
, 2004, “
Molecular Machines
,”
Annu. Rev. Biomed. Eng.
1523-9829,
6
, pp.
363
395
.
4.
Mavroidis
,
C.
, and
Dubey
,
A.
, 2003, “
From Pulses to Motors
,”
Nat. Mater.
1476-1122,
2
, pp.
573
574
.
5.
Ummat
,
A.
,
Dubey
,
A.
,
Sharma
,
G.
, and
Mavroidis
,
C.
, 2004, “
Bio-Nano-Robotics: State of the Art and Future Challenges
,” invited chapter in
The Biomedical Engineering Handbook
,
3rd Ed.
, edited by
M. L.
Yarmush
,
CRC Press
, City.
6.
Branden
,
C.
, and
Surname
,
T. J.
, 1991,
Introduction to Protein Structure
,
2nd ed.
Garland Publishing
, City.
7.
Cantor
,
C. R.
, and
Schimmel
,
P. R.
, 1997,
Biophysical Chemistry: The Conformation of Biological Macromolecules
,
W.H. Freeman & Co.
, San Fransisco.
8.
Kazerounian
,
K.
, 2002, “
Is Design of New Drugs a Challenge for Kinematics?
,”
Proceedings of the 8th International Conference on Advance Robot Kinematics (ARK)
.
9.
Burkert
,
U.
, and
Allinger
,
N.
, 1982,
Molecular Mechanics
,
Oxford University Press
, Oxford.
10.
Kavraki
,
L.
, 1996, “
Geometry and the Discovery of New Ligands
,”
Publisher
, City, pp.
435
448
.
11.
Parsons
,
D.
, and
Canny
,
J. F.
, 1994, “
Geometric Problems in Molecular Biology and Robotics
,” presented at the
2nd International Conference on Intelligent Systems for Molecular Biology
, Palo Alto, CA.
12.
Emiris
,
I. Z.
, and
Mourrain
,
B.
, 1999, “
Computer Algebra Methods for Studying and Computing Molecular Conformations
,”
Algorithmica
0178-4617,
25
, pp.
372
402
.
13.
Zhang
,
M.
, and
Kavraki
,
L.
, 2002, “
A New Method for Fast and Accurate Derivation of Molecular Conformations
,”
J. Chem. Inf. Comput. Sci.
0095-2338,
42
, pp.
64
70
.
14.
Kim
,
M. K.
,
Jernigan
,
R. L.
, and
Chirikjian
,
G. S.
, 2002, “
Efficient generation of Feasible Pathways For Protein Conformational Transitions
,”
Biophys. J.
0006-3495,
83
, pp.
1620
1630
.
15.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
, 2001,
Engineering Applications of Noncommutative Harmonic Analysis
,
CRC Press
, Boca Raton FL.
16.
Manocha
,
D.
,
Zhu
,
Y.
, and
Wright
,
W.
, 1995, “
Conformational Analysis of Molecular Chains Using Nano-Kinematics
,”
Computer Applications of Biological Sciences
,
11
, pp.
71
86
.
17.
Raghavan
,
M.
, and
Roth
,
B.
, 1995, “
Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators
,”
ASME J. Mech. Des.
1050-0472,
117
, pp.
298
306
.
18.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation For Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
0021-8936, pp.
215
221
.
19.
Chase
,
M.
, Year, “
Vector Analysis of Linkages
,”
ASME J. Eng. Ind.
0022-0817,
85
, pp.
300
308
.
20.
Kislitsin
,
A. P.
, 1954, “
Tensor Methods in the Theory of Spatial Mechanisms
,”
Trudi Seminar Po Teroii Mashin I Mekhanizmov, Akedemia Nauk, USSR
,
14
, pp.
51
57
.
21.
Osman
,
M. O.
, and
Segaev
,
D. N.
, 1972, “
Kinematic Analysis of Spatial Mechanisms by Means of Constant Distance Equations
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
1
, pp.
129
134
.
22.
Yuan
,
M. S.
, and
Freudenstien
,
F.
, 1971, “
Kinematic Analysis of Spatial Mechanisms by Means of Screw Coordinates
,”
Transactions of the ASME Journal of Engineering for Industry
,
93
, pp.
61
73
.
23.
Yuan
,
M. S.
, and
Freudenstien
,
F.
, 1964, “
Application of Dual-Number Quaternions Algebra to the Analysis of Spatial Mechanisms
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
86
, pp.
300
308
.
24.
Sandor
,
G. N.
, “
Principles of General Quaternion-Operator Method of Spatial Kinematic Synthesis
,” presented at ASME Paper No. 68-APM, 1968.
25.
Gupta
,
K. C.
, 1986, “
Kinematic Analysis of Manipulators Using the Zero Reference Position Description
,”
Int. J. Robot. Res.
0278-3649,
5
, pp.
5
13
.
26.
Osman
,
M. O.
,
Bahgat
,
B. M.
, and
Dukkipati
,
R. V.
, 1981, “
Kinematic Analysis of Spatial Mechanisms Using Train Components
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
823
830
.
27.
Kazerounian
,
K.
, and
Qian
,
Z.
, 1989, “
Kinematics Calibration of Robotic Manipulators
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
32
39
.
28.
Kazerounian
,
K.
, and
Nedungadi
,
A.
, 1988, “
Redundancy Resolution of Serial Manipulators Based on Robot Dynamics
,”
Mech. Mach. Theory
0094-114X,
22
, pp.
631
654
.
29.
Kazerounian
,
K.
, and
Wang
,
Z.
, 1988, “
Global Versus Local Optimization in Redundancy Resolution of Robotic Manipulat
,”
Int. J. Robot. Res.
0278-3649,
7
, pp.
3
12
.
30.
Canutescu
,
A. A.
, and
Dunbrack
,
R. L. J.
, 2003, “
Cyclic Coordinate Descent: A Robotics Algorithm for Protein Loop Closure
,”
Protein Sci.
0961-8368,
12
, pp.
963
972
.
31.
Rappé
,
C. J.
, 1991, “
Molecular Mechanics Across Chemistry
,”
University Science Books
,
Publisher
, City, pp.
101
103
.
32.
Dubey
,
A.
,
Sharma
,
G.
,
Mavroidis
,
C.
,
Tomassone
,
S. M.
,
Nikitczuk
,
K. P.
, and
Yarmush
,
M. L.
, 2004, “
Computational Studies of Viral Protein Nano-Actuators
,”
J. Comput. Theor. Nanosci.
1546-1955,
1
, pp.
18
28
.
You do not currently have access to this content.