In this paper, a new two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation is proposed. The nonlinear elastic forces of the beam element are obtained using a continuum mechanics approach, without employing a local element coordinate system. In this study, linear polynomials are used to interpolate both the transverse and longitudinal components of the displacement. This is different from other absolute nodal-coordinate-based beam elements where cubic polynomials are used in the longitudinal direction. The use of linear interpolation polynomials leads to the phenomenon known as shear locking. This defect is avoided through the adoption of selective integration within the numerical integration method. The proposed element is verified using several numerical examples. The results of the proposed element are compared to analytical solutions and the results for an existing shear deformable beam element. It is shown that by using the proposed element, accurate linear and nonlinear static deformations, as well as realistic dynamic behavior including the capturing of the centrifugal stiffening effect, can be achieved with a smaller computational effort than by using existing shear deformable two-dimensional beam elements.

1.
Shabana
,
A. A.
, 1998,
Dynamics of Multibody Systems
,
Wiley
, New York.
2.
Shabana
,
A. A.
, 1998, “
Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
293
306
.
3.
Cardona
,
A.
, and
Geradin
,
M.
, 1988, “
A Beam Finite Element Non-Linear Theory With Finite Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
2403
2438
.
4.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
J. Mech. Des.
1050-0472,
123
, pp.
606
613
.
5.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
J. Mech. Des.
1050-0472,
123
, pp.
614
621
.
6.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
, 2003, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
1384-5640,
9
, pp.
283
309
.
7.
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, “
Development of Simple Models for The Elastic Forces of The Absolute Nodal Coordinate Formulation
,”
J. Power Sources
0378-7753,
235
(
4
), pp.
539
565
.
8.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2003, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
53
74
.
9.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
J. Mech. Des.
1050-0472,
122
, pp.
498
507
.
10.
Omar
,
M. A.
, and
Shabana
,
A. A.
, 2001, “
A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation
,”
J. Sound Vib.
0022-460X,
243
(
3
), pp.
565
576
.
11.
Escalona
,
J. L.
,
Hussien
,
H. A.
, and
Shabana
,
A. A.
, 1998, “
Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics
,”
J. Sound Vib.
0022-460X,
214
(
5
), pp.
833
851
.
12.
Hughes
,
T. J. R.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
General Publishing
, Ontario.
13.
Rhim
,
J.
, and
Lee
,
S. W.
, 1998, “
A Vectorial Approach to Computational Modeling of Beams Undergoing Finite Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
527
540
.
14.
Hauptmann
,
R.
,
Doll
,
S.
,
Harnau
,
M.
, and
Schweizerhof
,
K.
, 2001, “
Solid-Shell Elements with Linear and Quadratic Shape Functions at Large Deformations with Nearly Incompressible Materials
,”
Comput. Struct.
0045-7949,
79
, pp.
1671
1685
.
15.
Sharf
,
I.
, 1999, “
Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams
,”
Multibody Syst. Dyn.
1384-5640,
3
, pp.
189
205
.
16.
Cook
,
R. D.
, 1981,
Concepts and Applications of Finite Element Analysis
,
Wiley
, New York.
17.
Bucalem
,
M. L.
, and
Bathe
,
K.-J.
, 1995, “
Locking Behavior of Isoparametric Curved Beam Finite Elements
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
25
29
.
18.
Reddy
,
J. N.
, 1997, “
On Locking-Free Shear Deformable Beam Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
149
, pp.
113
132
.
19.
Shabana
,
A. A.
, 1994,
Computational Dynamics
,
Wiley
, New York.
20.
ANSYS User’s Manual
, 2001, Theory,
Twelfth Edition
,
SAS IP
, Canonsburg.
21.
Wu
,
S.-C.
, and
Haug
,
E. J.
, 1988, “
Geometric Non-linear Substructuring for Dynamic of Flexible Mechanical Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
2211
2226
.
22.
Berzeri
,
M.
,
Campanelli
,
M.
, and
Shabana
,
A. A.
, 2001, “
Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation
,”
Multibody Syst. Dyn.
1384-5640,
5
, pp.
21
54
.
23.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
On the Dynamics of Flexible Beam Under Large Overall Motions—The Plane Case: Part II
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
855
863
.
24.
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2002, “
Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
7
, pp.
357
387
.
25.
Dufva
,
K.
,
Sopanen
,
J.
, and
Mikkola
,
A.
, 2005, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
0022-460X,
280
(
3‐5
), pp.
719
738
.
This content is only available via PDF.
You do not currently have access to this content.