A kinematic mapping of planar displacements is used to derive generalized constraint equations having the form of ruled quadric surfaces in the image space. The forward kinematic problem for all three-legged, three-degree-of-freedom planar parallel manipulators thus reduces to determining the points of intersection of three of these constraint surfaces, one corresponding to each leg. The inverse kinematic solutions, though trivial, are implicit in the formulation of the constraint surface equations. Herein the forward kinematic solutions of planar parallel robots with arbitrary, mixed leg architecture are exposed completely, and in a unified way, for the first time.

1.
Blaschke
,
W.
,
1911
, “
Euklidische Kinematik und Nichteuklidische Geometrie
,”
Zeitschr. Math. Phys.
,
60
, pp.
61
91
and 203–204.
2.
Gru¨nwald
,
J.
,
1911
, “
Ein Abbildungsprinzip, welches die ebene Geometrie und Kinematik mit der ra¨umlichen Geometrie verknu¨pft
,”
Sitzber. Ak. Wiss. Wien
,
120
, pp.
677
741
.
3.
Study, E., 1903, Geometrie der Dynamen., Teubner Verlag, Leipzig, Germany.
4.
Klein
,
F.
,
1872
, “
Vergleichende Betrachtungen u¨ber neuere geometrische Forschungen, Erlangen,” reprinted in 1893
,
Mathematische Annalen
,
43
, pp.
63
100
.
5.
Klein, F., 1939, Elementary Mathematics From an Advanced Standpoint: Geometry, Dover Publications, Inc., New York, N.Y.
6.
Rooney, J., and Earle, C. F., 1983, “Manipulator Postures and Kinematics Assembly Configurations,” 6th World Congress on Theory of Machines and Mechanisms, New Delhi, pp. 1014–1020.
7.
Roth, B., 1993, “Computations in Kinematics,” Computational Kinematics, Angeles, J., Hommel, G., and Kova´cs, P., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 3–14.
8.
Roth, B., 1994, “Computational Advances in Robot Kinematics,” Advances in Robot Kinematics and Computational Geometry, Lenarcˇicˇ, J., and Ravani, B., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 7–16.
9.
Shirkhodaie, A. H., and ane Soni, A. H., 1987, “Forward and Inverse Synthesis for a Robot With Three Degrees of Freedom,” Summer Computation Simulation Conference, Montre´al, Que´, Canada, pp. 851–856.
10.
Gosselin, C., and Sefrioui, J., 1991, “Polynomial Solutions for the Direct Kinematic Problem of Planar Three-Degree-of Freedom Parallel Manipulators,” Proc. 5th Int. Conf. on Adv. Rob. (ICAR), Pisa, Italy, pp. 1124–1129.
11.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.
12.
Wohlhart, K., 1992, “Direct Kinematic Solution of the General Planar Stewart Platform,” Proc. of the Int. Conf. on Computer Integrated Manufacturing, Zakopane, Poland, pp. 403–411.
13.
Merlet, J.-P., 1996, “Direct Kinematics of Planar Parallel Manipulators,” IEEE Int. Conf. on Robotics and Automation, Minneapolis, pp. 3744–3749.
14.
Pennock
,
G. R.
, and
Kassner
,
D. J.
,
1992
, “
Kinematic Analysis of a Planar Eight-Bar Linkage: Application to a Platform-Type Robot
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
87
95
.
15.
Pennock
,
G. R.
, and
Kassner
,
D. J.
,
1993
, “
The Workspace of a General Geometry Planar Three-Degree-of-Freedom Platform-Type Manipulator
,”
ASME J. Mech. Des.
,
115
, pp.
269
276
.
16.
Gosselin, C., 1988, “Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators,” PhD thesis, Dept. of Mech. Eng., McGill University, Montre´al, Qc., Canada.
17.
Murray, A. P., and Pierrot, F., 1998, “N-Position Synthesis of Parallel Planar RPR Platforms,” Advances in Robot Kinematics: Analysis and Control, Lenarcˇicˇ, J., and Husty, M. L., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 69–78.
18.
Husty, M. L., 1995, “Kinematic Mapping of Planar Tree(sic.)-Legged Platforms,” Proc. 15th Canadian Congress of Applied Mechanics (CANCAM 1995), Victoria, B. C., Canada, Vol. 2: pp. 876–877.
19.
Hayes, M. J. D., 1999, “Kinematics of General Planar Stewart-Gough Platforms,” PhD thesis, Dept. of Mech. Eng., McGill University, Montre´al, Qc., Canada.
20.
Chen, C., 2001, “A Direct Kinematic Computation Algorithm for all Planar 3-Legged Platforms,” Master’s thesis, Dep’t. of Mech. Eng., McGill University, Montre´al, Qc., Canada.
21.
Zsombor-Murrary, P. J., Chen, C., and Hayes, M. J. D., 2002, “Direct Kinematic Mapping for General Planar Parallel Manipulators,” Proc. CSME Forum 2002, Kingston, On., Canada.
22.
Hayes
,
M. J. D.
,
Husty
,
M. L.
, and
Zsombor-Murray
,
P. J.
,
1999
, “
Solving the Forward Kinematics of a Planar 3-Legged Platform With Holonomic Higher Pairs
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
212
219
.
23.
Bottema, O., and Roth, B., 1990, Theoretical Kinematics, Dover Publications, Inc., New York, N.Y.
24.
Hayes
,
M. J. D.
, and
Husty
,
M. L.
,
2003
, “
On the Kinematic Constraint Surfaces of General Three-Legged Planar Robot Platforms
,”
Mech. Mach. Theory
,
38
(
5
), pp.
379
394
.
25.
Hayes, M. J. D., and Zsombor-Murray, P. J., 1996, “A Planar Parallel Manipulator With Holonomic Higher Pairs: Inverse Kinematics,” Proc. CSME Forum 1996, Symposium on the Theory of Machines and Mechanisms, Hamilton, On., Canada, pp. 109–116.
26.
Hayes, M. J. D., and Zsombor-Murray, P. J., 1998, “Inverse Kinematics of a Planar Manipulator With Holonomic Higher Pairs,” Recent Advances in Robotic Kinematics, Lenarcˇicˇ, J., and Husty, M. L., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 59–68.
You do not currently have access to this content.