One of the fundamental problems arising in kinematics is that of determining object position, velocity and acceleration from given point position, velocity and acceleration data. This type of problem is frequently encountered in robotics, biomechanics, real-time control of space structures, automatic guided vehicles, etc. Complications arise when redundant data are used and when the data have errors. Chutakanonta and Gupta proposed two simple and elegant methods for the estimation of object position from the given point position data. The present work is an extension of these methods for estimating the object velocity and acceleration states from the given point position, velocity and acceleration data. The method proposed herein uses Singular Value Decomposition (SVD) to effectively estimate the object velocity and acceleration states. Such matrix decompositions can be performed by using readily available matrix-oriented software like MATLAB and can be successfully used to simplify the solution of the over-determined system of equations encountered in these types of problems. Several hypothetical examples and examples that simulate practical situations are presented to determine the effectiveness, robustness and applicability of the proposed method. The method is found to be very effective in estimating the object velocity and acceleration states in the presence of imprecise and redundant data as well as for nearly co-planar point data.

1.
Chutakanonta, P., 1998, “An Analysis of the Accuracy of Object Position determined from the Point Coordinate Data,” Masters Thesis, Department of Mechanical Engineering, University of Illinois at Chicago.
2.
Gupta
,
K. C.
, and
Chutakanonta
,
P.
,
1998
, “
Accurate Determination of Object Position from Imprecise Data
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
59
564
, Dec.
3.
Beggs, J. S., 1966, Advanced Mechanism, Macmillan, New York.
4.
Suh, C. H., and Radcliffe, C. W., 1978, Kinematics and Mechanisms Design, J. Wiley, New York.
5.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North Holland, Amsterdam.
6.
Angeles, J., 1982, Spatial Kinematics, Springer-Verlag, Berlin.
7.
Beggs, J. S., 1983, Kinematics, Hemisphere, Washington.
8.
Cheng
,
H.
, and
Gupta
,
K. C.
,
1989
, “
An Historical Note on Finite Rotations
,”
ASME J. Appl. Mech.
,
56
, pp.
139
145
.
9.
Gupta, K. C., 1997, Mechanics and Control of Robots, Springer-Verlag, New York.
10.
Angeles
,
J.
,
1986
, “
Automatic Computation of Screw Parameters of Rigid Body Motions, Part I: Finitely Separated Positions
,”
ASME J. Dyn. Syst., Meas., Control
,
108
(
1
), pp.
32
38
.
11.
Laub
,
A. J.
, and
Shiflett
,
G. R.
,
1982
, “
Linear Algebra Approach to the Analysis of Rigid Body Displacement from Initial and Final position Data
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
213
216
.
12.
Fenton, R. G., and Shi, X., 1989, “Comparison of Methods for Determining Screw Parameters of Finite Rigid Body motion from Initial and Final Position Data,” Proc. ASME Design Automation Conference—Advances in Design Automation, DE19(3) pp. 433–439.
13.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
,
1980
, “
Rigid Body Motion Calculated from Spatial Coordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.
14.
Shiflett
,
G. R.
, and
Laub
,
A. J.
,
1995
, “
The Analysis of Rigid Body Motion from Measured Data
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
4
), pp.
578
584
.
15.
Laub
,
A. J.
, and
Shiflett
,
G. R.
,
1983
, “
A Linear Algebra Approach to the Rigid Body Velocity from Position and Velocity Data
,”
ASME J. Dyn. Syst., Meas., Control
,
105
, pp.
92
95
.
16.
Angeles
,
J.
,
1986
, “
Automatic Computation of Screw Parameters of Rigid Body Motions, Part II: Infinitesimally Separated Positions
,”
ASME J. Dyn. Syst., Meas., Control
,
108
(
1
), pp.
39
43
.
17.
Sommer
,
H. J.
,
1992
, “
Determination of 1st and 2nd—Order Instant Screw Parameters from Landmark Trajectories
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
274
282
.
18.
Rico-Martinez
,
J. M.
, and
Gallardo-Alvarado
,
J.
,
2000
, “
A Simple Method for the Determination of Angular Velocity and Acceleration of a Spherical motion through Quaternions
,”
Meccanica
,
35
(
2
), pp.
111
118
.
19.
Chaudhari
,
S.
, and
Karandikar
,
S. S.
,
1996
, “
Recursive Methods for the Estimation of Rotation Quaternions
,”
IEEE Trans. Aerosp. Electron. Syst.
,
32
(
2
), pp.
845
854
.
20.
Condurache
,
D.
, and
Matcovschi
,
M. H.
,
2001
, “
Algebraic Computation of the Twist of a Rigid Body Through Direct Measurements
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
40–41
), pp.
5357
5376
, July.
21.
Angeles
,
J.
,
1987
, “
Computation of Rigid Body Angular Acceleration from Point-Acceleration Measurements
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
124
127
.
22.
Penny, J., and Lindfield, G., 2000, Numerical Methods using MATLAB, Prentice Hall, 2nd Edition.
23.
Gennery
,
D. B.
,
1992
, “
Visual Tracking of Known 3-Dimensional Objects
,”
Int. J. Comput. Vis.
,
7
(
3
), pp.
243
270
.
24.
Allen
,
P. K.
,
Timcenko
,
A.
,
Yoshimi
,
B.
, and
Michelman
,
P.
,
1993
, “
Automated Tracking and Grasping of a moving Object With a Robotic Hand-Eye System
,”
IEEE Trans. Rob. Autom.
,
9
(
2
), pp.
152
164
.
25.
Heeren
,
T. A. G.
, and
Veldpaus
,
F. E.
,
1992
, “
Optical System to Measure the End Effector Position for On-Line Control Purposes
,”
Int. J. Robot. Res.
,
11
(
1
), pp.
53
63
.
26.
Weng
,
J.
,
Cohen
,
P.
, and
Rebibo
,
N.
,
1992
, “
Motion and Structure Estimation from Stereo Image Sequences
,”
IEEE Trans. Rob. Autom.
,
8
(
3
), pp.
362
382
.
27.
He
,
J. P.
, and
Tian
,
C. X.
,
1998
, “
A Statistical Smoothness Measure to Eliminate Outliers in Motion Trajectory Tracking
,”
Human Movement Science
,
17
(
2
), pp.
189
200
.
28.
Strang, G., 1988, Linear Algebra and its Applications, Harcourt Brace Jovanovich, San Diego.
29.
Vithani, A. R., 2002, “Estimation of Object Kinematics from the Point Coordinate, Velocity and Acceleration Data,” Masters Thesis, Department of Mechanical Engineering, University of Illinois at Chicago.
You do not currently have access to this content.