Compliant mechanisms are elastic continua used to transmit or transform force and motion mechanically. The topology optimization methods developed for compliant mechanisms also give the shape for a chosen parameterization of the design domain with a fixed mesh. However, in these methods, the shapes of the flexible segments in the resulting optimal solutions are restricted either by the type or the resolution of the design parameterization. This limitation is overcome in this paper by focusing on optimizing the skeletal shape of the compliant segments in a given topology. It is accomplished by identifying such segments in the topology and representing them using Bezier curves. The vertices of the Bezier control polygon are used to parameterize the shape-design space. Uniform parameter steps of the Bezier curves naturally enable adaptive finite element discretization of the segments as their shapes change. Practical constraints such as avoiding intersections with other segments, self-intersections, and restrictions on the available space and material, are incorporated into the formulation. A multi-criteria function from our prior work is used as the objective. Analytical sensitivity analysis for the objective and constraints is presented and is used in the numerical optimization. Examples are included to illustrate the shape optimization method.

1.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
, pp.
280
290
.
2.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
,
1995
, “
Designing Compliant Mechanisms
,”
Mech. Eng. (Am. Soc.. Mech. Eng.)
117
, (
11
), November, pp.
93
96
.
3.
Moulton
,
T.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation
,”
Sens. Actuators A
,
90
, pp.
38
48
.
4.
Towfigh, K., 1969, “The Four-Bar Linkage as an Adjustment Mechanism.” Oklahoma State University Applied Mechanism Conference, July 31–Aug 1, Tulsa, Oklahoma, pp. 27.1–27.4.
5.
Byers, F. K., and Midha, A., 1991, “Design of a Compliant Gripper Mechanism,” Proceedings of the 2nd National Applied Mechanisms & Robotics Conference, Cincinnati, Ohio, pp. XC.1-1–XC.1-12.
6.
Crane, N. B., Howell, L. L., and Weight, B. L., 2000, “Design and Testing of a Compliant Floating-Opposing-Arm (FOA) Centrifugal Clutch,” Proceedings of the 2000 ASME Design Engineering Technical Conferences, DETC2000/MECH-14451.
7.
Ananthasuresh, G. K., and Saggere, L., 1994, “Compliant Stapler,” University of Michigan Mechanical Engineering and Applied Mechanics Technical Report, #UM-MEAM-95-20.
8.
Bar-Avi, P., and Benaroya, H., 1997, Nonlinear Dynamics of Compliant Offshore Structures, Advances in Engineering series, Swets & Zeitlinger, June.
9.
Saggere
,
L.
, and
Kota
,
S.
,
1999
, “
Static Shape Control of Smart Structures Using Compliant Mechanisms
,”
AIAA J.
,
37
(
5
), pp.
572
578
.
10.
Kota
,
S.
,
Ananthasuresh
,
G. K.
,
Crary
,
S. B.
, and
Wise
,
K. D.
,
1994
, “
Design and Fabrication of Microelectromechanical Systems
,”
ASME J. Mech. Des.
,
116
, (
4
), March, pp.
1081
1088
.
11.
Frecker, M., 2001, “Design of Multifunctional Compliant Mechanisms for Minimally Invasive Surgery: Preliminary Results,” paper #DAC-21055, 2001 ASME Design Automation Conference, Pittsburgh, PA, Sep. 9–12.
12.
Howell, L. L., 1993, “A Generalized Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms,” Ph.D. Thesis, Purdue University, West Lafayette, Indiana.
13.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
, pp.
121
125
.
14.
Ananthasuresh, G. K., Kota, S., and Kikuchi, N., 1994, “Strategies for Systematic Synthesis of Compliant MEMS,” Proceedings of the 1994 ASME Winter Annual Meeting, Nov., Chicago, IL, pp. 677–686.
15.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1998
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
, pp.
197
224
.
16.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm. 2. Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
17.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
4
), pp.
495
526
.
18.
Nishiwaki
,
S.
,
Frecker
,
M.
,
Min
,
S.
, and
Kikuchi
,
N.
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
535
559
.
19.
Frecker
,
M. I.
,
Anathasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization,” ASME J. Mech. Des., 238–245.
20.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2000
, “
On an Optimal Property of Compliant Mechanisms
,”
Structural and Multidisciplinary Optimization
,
19
(
1
), pp.
36
49
.
21.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
, pp.
2683
2705
.
22.
Topping
,
B. H. V.
,
1983
, “
Shape Optimization of Skeletal Structures: A Review
,”
J. Struct. Div. ASCE
,
109
(
8
), pp.
1933
1951
.
23.
Haftka
,
R. T.
, and
Grandhi
,
R. V.
,
1986
, “
Structural Shape Optimization—A Survey
,”
Comput. Methods Appl. Mech. Eng.
,
57
, pp.
91
106
.
24.
Phan
,
A.-V.
, and
Phan
,
T.-N.
,
1999
, “
A Structural Shape Optimization System Using the Two-dimensional Boundary Contour Method
,”
Arch. Appl. Mech.
69
, pp.
481
489
.
25.
Shi
,
X.
, and
Mukherjee
,
S.
,
1999
, “
Shape Optimization in Three-dimensional Linear Elasticity by the Boundary Contour Method
,”
Eng. Anal. Boundary Elem.
23
, pp.
627
637
.
26.
Sharatchandra
,
M. C.
,
Sen
,
M.
, and
Mohamed
,
G.
, 1998, “New Approach to Constrained Shape Optimization Using Genetic Algorithms,” AIAA J., 36, (1), January.
27.
Annicchiarico
,
W.
, and
Cerrolaza
,
M.
,
1999
, “
Finite Elements, Genetic Algorithms and β-splines: A Combined Technique for Shape Optimization
,”
Finite Elem. Anal. Design
,
33
, pp.
125
141
.
28.
Zienkiewicz, O. C., and Campbell, J. S., 1973, “Shape Optimization and Sequential Linear Programming,” R. H. Gallagher and O. C. Zienkiewicz, eds., Optimum Syructural Design, Wiley, New York, pp. 109–126.
29.
Yang
,
R. J.
,
Dewhirst
,
D. L.
,
Allison
,
J. E.
, and
Lee
,
A.
,
1992
, “
Shape Optimization of Connecting Rod Pin End Using a Generic Model
,”
Finite Elem. Anal. Design
,
11
, pp.
257
264
.
30.
Tortorelli
,
D. A.
,
Tomasko
,
J. A.
,
Morthland
,
T. E.
, and
Dantzig
,
J. A.
,
1994
, “
Optimal Designs of Non-linear Parabolic Systems-Part II: Variable Spatial Domain With Applications to Casting Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
113
, pp.
157
172
.
31.
Hetrick
,
J. A.
, and
Kota
,
S.
,
1999
, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
121
, pp.
229
234
.
32.
Xu, D., 2000, “Skeletal Shape Optimization of Compliant Mechanisms,” Masters thesis, University of Pennsylvania.
33.
Yamaguchi, Fujio, 1988, Curves and Surfaces in Computer Aided Geometric Design, Springer, New York.
34.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2002, “A Computational Approach to the Number Synthesis of Linkages,” to appear in ASME J. Mech. Des.
35.
Haftka, R., and Gurdal, Z., 1989, Elements of Structural Optimization, Kluwer Academic Publishers, Boston.
You do not currently have access to this content.