This paper presents a generalization of Kutzbach-Gru¨bler criterion for mobility analysis of kinematic chains based on group theory. This new mobility criterion applies to exceptional linkages and reduces to a group theoretic representation of Kutzbach-Gru¨bler criterion for trivial linkages. Furthermore, it is shown that using sets and groups of Euclidean displacements, one can distinguish between trivial, exceptional, and paradoxical linkages. Using these concepts, formal definitions of trivial, exceptional, and paradoxical linkages are presented and it is shown that there are two classes of paradoxical linkages. This work builds upon and extends the work of Herve´ and Fanghella and Galletti in application of group theory to analysis of kinematic chains.

1.
Kuznetsov, E. N., 1991, Underconstrained Structural Systems, New York: Springer Verlag.
2.
Chebyshev, P. L., 1869, “On Parallelograms,” Collected Works, in Russian, Moscow, 1955, pp. 664–669.
3.
Sylvester, J. J., 1870–73, “On Recent Discoveries in the Mechanical Conversion of Motion,” Collected Mathematical Papers, Vol. 3, pp. 7–25.
4.
Gru¨bler
,
M.
, 1883, “Allgemeine Eigenschaften der zwangla¨ufigen ebenen kinematische kette: I,” Civilingenieur, 29, pp. 167–200.
5.
Gru¨bler
,
M.
, 1885, “Allgemeine Eigenschaften der zwangla¨ufigen ebenen kinematische kette: II,” Verein zur Beforderung des Gewerbefleisses. Verhandlungen, 64, pp. 179–223.
6.
Somov
,
P. O.
, 1887, “On the Degree of Freedom of the Motion of Kinematic Chains,” J. Phys. Chem. Soc. of Russia 19, 9, pp. 7–25.
7.
Kutzbach
,
K.
, 1933, “Einzelfragen aus dem Gebiet der Maschinenteile,” Zeitschrift der Verein Deutscher Ingenieur, 77, pp. 1168.
8.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms., Oxford University Press, Oxford.
9.
Herve´
,
J. M.
,
1978
, “
Analyse Structurelle des Me´canismes par Groupe des De´placements
,”
Mech. Mach. Theory
,
13
, pp.
437
450
.
10.
Bottema
,
O.
,
1950
, “
On Gruebler’s Formulae for Mechanisms
,”
Appl. Sci. Res., Sect. A
,
A2
, pp.
162
164
.
11.
Freudenstein, F., and Alizade, R., 1975, “On the Degree of Freedom of Mechanisms with Variable General Constraint,” Proceedings of the Fourth World Congress on the Theory of Machines and Mechanisms, London, The Institution of Mechanical Engineers, pp. 51–55.
12.
Bagci, C., 1988, “Determining General and Overclosing Constraints in Mechanism Mobility Using Structural Finite Element Joint Freedoms,” Proceedings of the ASME 20th Mechanisms Conference, Vol. 15-1, Trends and Developments in Mechanisms, Machines and Robotics, New York, American Society of Mechanical Engineers, pp. 27–36.
13.
Sarrus
,
P.
,
1853
, “
Note sur Transformation des Mouvements Rectilignes Alternatifs, en Mouvements Circularies; et Reciproquement
,”
Comptes Rendus, Acad, Sci, Paris
,
36
, pp.
1036
1038
.
14.
Bennett
,
G. T.
,
1903
, “
A New Mechanism
,”
Engineering
,
76
, pp.
777
778
.
15.
Bricard, R., 1927, Lecons de Cine´matique, Vol. II., Gauthier-Villars, Paris.
16.
Myard
,
F. E.
,
1931
, “
Sur les Chaı^nes Ferme´es a` Quatre Couples Rotoides non Concourants, De´formables au Premier Degre´ de Liberte´. Isogramme Torique
,”
Comptes Rendus, Acad. Sci. Paris
,
192
, pp.
1194
1196
.
17.
Goldberg
,
M.
,
1943
, “
New Five-bars and Six-bars Linkages in Three Dimensions
,”
Trans. ASME
,
65
, pp.
649
661
.
18.
Dimentberg, F. M., and Yoslovich, I. V., 1966, “A Spatial Four-link Mechanism Having Two Prismatic Pairs,” Journal of Mechanisms 1, pp. 291–300. (English translation by C. W. McLarnan).
19.
Hunt, K. H., 1967, “Prismatic Pairs in Spatial Linkages,” Journal of Mechanisms 2, pp. 213–230.
20.
Waldron
,
K. J.
,
1973
, “
A Study of Overconstrained Linkage Geometry by Solution of Closure Equations-Part I. Method of Study
,”
Mech. Mach. Theory
,
8
, pp.
95
104
.
21.
Waldron
,
K. J.
,
1973
, “
A Study of Overconstrained Linkage Geometry by Solution of Closure Equations-Part II. Four-bar Linkages with Lower Pair Joints other than Screw Joints
,”
Mech. Mach. Theory
,
8
, pp.
233
247
.
22.
Baker
,
J. E.
,
1979
, “
A Compendium of Line-Symmetric Four-Bars
,”
ASME J. Mech. Des.
,
101
, pp.
509
514
.
23.
Baker
,
J. E.
,
1979
, “
The E-H-H-H-Linkage
,”
Mech. Mach. Theory
,
14
, pp.
361
372
.
24.
Baker
,
J. E.
,
1981
, “
The S-H-H-H-Linkage
,”
Mech. Mach. Theory
,
16
, pp.
599
609
.
25.
Baker
,
J. E.
,
1982
, “
On Completing the Determination of Existence Criteria for Overconstrained 4-Bars with Helical Joints
,”
Mech. Mach. Theory
,
17
, pp.
133
142
.
26.
Baker
,
J. E.
,
1989
, “
Overconstrained Five-Bars with Prismatic Joints and Parallel Adjacent Joint Axes
,”
Mech. Mach. Theory
,
24
, pp.
267
273
.
27.
Baker
,
J. E.
,
1995
, “
On Testing for Gross Mobility of New Kinematic Loops with Screw System Algebra
,”
Mech. Mach. Theory
,
30
, pp.
679
693
.
28.
Baker
,
J. E.
,
1996
, “
On 5-Revolute Kinematic Loops with Intersecting Adjacent Joint Axes
,”
Mech. Mach. Theory
,
31
, pp.
1167
1183
.
29.
Wohlhart
,
K.
,
1991
, “
Merging 2 General Goldberg’s 5R-Linkages to obtain a New 6R-Space Mechanism
,”
Mech. Mach. Theory
,
26
, pp.
659
668
.
30.
Wohlhart
,
K.
,
1993
, “
The 2 Types of the Orthogonal Bricard Linkage
,”
Mech. Mach. Theory
,
28
, pp.
809
817
.
31.
Herve´, J. M., 1997, “Conjugacy and Invariance in the Displacement Group as a Tool for Mechanism Design,” Technical Report, Mechanical Research Team. Ecole Centrale Paris, France.
32.
Fanghella
,
P.
,
1988
, “
Kinematics of Spatial Linkages by Group Algebra: A Structure-Based Approach
,”
Mech. Mach. Theory
,
23
, pp.
171
183
.
33.
Fanghella
,
P.
, and
Galletti
,
C.
,
1994
, “
Mobility Analysis of Single-Loop Kinematic Chains: An Algorithmic Approach Based on Displacement Groups
,”
Mech. Mach. Theory
,
29
, pp.
1187
1204
.
34.
Fanghella
,
P.
, and
Galletti
,
C.
,
1995
, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematics
,”
ASME J. Mech. Des.
,
117
, pp.
470
478
.
35.
Rico, J. M., and Ravani, B., 2002, “On Mobility Analysis of Linkages Using Group Theory,” ASME Paper DETC02/MECH-34249, CD-Rom, Proceedings of the Design Engineering Technical Conference 2002, Montreal, Canada.
36.
Angeles, J., 1982, Spatial Kinematic Chains, Springer Verlag, New York.
37.
Baker
,
J. E.
, and
Waldron
,
K. J.
,
1974
, “
The C-H-C-H Linkage
,”
Mech. Mach. Theory
,
9
, pp.
285
297
.
You do not currently have access to this content.