This paper formulates the developable surface design problem in an optimal control setting. Given a regular curve bt on the unit sphere corresponding to a one-parameter family of rulings, and two base curve endpoints a0,a1R3, we consider the problem of constructing a base curve at such that at0=a0,at1=a1, and the resulting surface fs,t=at+sbt is developable. We formulate the base curve design problem as an optimal control problem, and derive solutions for objective functions that reflect various practical aspects of developable surface design, e.g., minimizing the arc length of the base curve, keeping the line of regression distant from the base curve, and approximating a given arbitrary ruled surface by a developable surface. By drawing upon the large body of available results for the optimal control of linear systems with quadratic criteria, our approach provides a flexible method for designing developable surfaces that are optimized for various criteria.

1.
do Carmo, M. P., 1976, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey.
2.
Bodduluri, R. M. C., and Ravani, B., 1992, “Geometric Design and Fabrication of Be´zier Developable Surfaces,” Proc. ASME Design Automation Conf., 2, pp. 243–250.
3.
Bodduluri
,
R. M. C.
, and
Ravani
,
B.
,
1993
, “
Design of Developable Surfaces Using Duality between Plane and Point Geometries
,”
Comput.-Aided Des.
,
25
(
10
), pp.
621
632
.
4.
Lang
,
J.
, and
Roschel
,
O.
,
1992
, “
Developable 1,n Bezier Surfaces
,”
Comput.-Aided Geom. Des.
,
9
, pp.
291
298
.
5.
Hoschek, J., and Pottmann, H., 1995, “Interpolation and Approximation with Developable B-Spline Surfaces,” Mathematical Methods in CAGD III, M. Daehlen, T. Lyche, and L. Schumaker, eds., Vanderbilt Univ. Press.
6.
Pottmann
,
H.
, and
Farin
,
G.
,
1995
, “
Developable Rational Be´zier and B-Spline Surfaces
,”
Computer-Aided Geometric Design
,
12
, pp.
513
531
.
7.
Aumann
,
G.
,
1991
, “
Interpolation with Developable Be´zier Patches
,”
Comput.-Aided Geom. Des.
,
23
, pp.
409
420
.
8.
Ravani
,
B.
, and
Ku
,
T. S.
,
1991
, “
Bertrand Offsets of Ruled and Developable Surfaces
,”
Comput.-Aided Des.
,
23
(
2
), pp.
145
152
.
9.
Redont
,
P.
,
1989
, “
Representation and Deformation of Developable Surfaces
,”
Comput.-Aided Des.
,
21
(
1
), pp.
13
20
.
10.
Maekawa
,
T.
, and
Chalfant
,
J.
,
1998
, “
Design and Tessellation of B-Spline Developable Surfaces
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
453
461
.
11.
Azariadis
,
P.
, and
Aspragathos
,
N.
,
1997
, “
Design of Plane Developments of Doubly Curved Surfaces
,”
Comput.-Aided Des.
,
29
(
10
), pp.
675
685
.
12.
Elber
,
G.
,
1995
, “
Model Fabrication Using Surface Layout Projection
,”
Comput.-Aided Des.
,
27
(
4
), pp.
283
291
.
13.
Hoschek, J., and Schneider, M., 1997, “Interpolation and Approximation with Developable Surfaces,” Curves and Surfaces with Applications in CAGD, A. LeMehaute, C. Rabut, L. L. Schumaker, eds., Vanderbilt Univ. Press, Nashville, pp. 185–202.
14.
Chen
,
H.-Y.
, et al.
,
1999
, “
On Surface Approximation Using Developable Surfaces
,”
Graph. Models Image Process.
,
61
(
3
), pp.
110
124
.
15.
Pottman
,
H.
, and
Wallner
,
M.
,
1999
, “
Approximation Algorithms for Developable Surfaces
,”
Computer-Aided Geometric Design
,
16
(
6
), pp.
539
556
.
16.
Hoschek
,
J.
, and
Seeman
,
G.
,
1992
, “
Spherical Splines
,”
Math. Modell. Numer. Anal.
,
26
(
1
), pp.
1
22
.
17.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1995
, “
Kinematically Optimal Hyper-Redundant Manipulator Configurations
,”
IEEE Trans. Rob. Autom.
,
11
(
6
), pp.
794
806
.
18.
Unger
,
D. J.
,
1991
, “
Developable Surfaces in Elastoplastic Fracture Mechanics
,”
Int. J. Fract.
,
50
(
3
), pp.
33
38
.
19.
Lu
,
H. Q.
,
Todhunter
,
J. S.
, and
Sze
,
T. W.
,
1993
, “
Congruence Conditions for Nonplanar Developable Surfaces and Their Application to Surface Recognition
,”
CVGIP: Image Understand.
,
56
(
3
), pp.
265
285
.
20.
Brockett, R., 1970, Finite Dimensional Linear Systems, John Wiley, New York.
21.
Sternberg, S., 1964, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, New Jersey.
22.
Kokotovic, P., and Khalil, K. H., 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, London.
You do not currently have access to this content.