One of the most critical issues in the material handling of compliant objects is excessive part deformation. The deformation of compliant sheet metal parts during the handling process can significantly impact both part dimensional quality and production rate. Increasing production rate while maintaining part quality requires an optimal design of the part transfer trajectory. This paper describes a new methodology of time-optimal trajectory planning for compliant parts by discretizing the part transfer path into N segments that have equal horizontal distance and by approximating the trajectory as having piecewise constant acceleration that can only change its value at the end of each segment. The contribution of the methodology is that part deformation determined by transfer velocity and acceleration is considered as a nonlinear constraint, which is obtained from FEA simulation and model fitting. Part permanent deformation, trajectory smoothness, and static obstacle avoidance are also considered. The methodology is validated by simulations at different motion conditions and obstacle configurations. This paper addresses the lack of current design guidelines for material handing development and simultaneously provides a mathematical tool to significantly enhance the production efficiency in manufacturing of compliant sheet metal parts.

1.
Li, D., Ceglarek, D., and Shi, J., 1993, “Sliding Door Process Variation Study,” Technical Report, University of Michigan, Ann Arbor.
2.
Ceglarek
,
D.
, and
Shi
,
J.
,
1995
, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manufacturing Review
,
8
(
2
), pp.
139
154
.
3.
Wu, X., Shi, J., and Hu, S., 1996, “On-Site Measurement and Process Monitoring for Stamping Variation Reduction,” Technical Report, the 2mm Program, NIST-Advanced Technology Program, pp. 61–80.
4.
Ceglarek
,
D.
,
Li
,
H. F.
, and
Tang
,
Y.
,
2001
, “
Modeling and Optimization of Fixture For Handling Compliant Sheet Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
473
480
.
5.
Li
,
H. F.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2002
, “
A Dexterous Part Holding Model for Handling Compliant Sheet Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
109
118
.
6.
Sprow
,
E.
,
1991
, “
Sheet Metal FMS: Too Big a Jump
,”
Tooling and Production
,
57
(
7
), pp.
53
55
.
7.
Erdmann
,
M.
, and
Lozano-Perez
,
T.
,
1987
, “
On Multiple Moving Objects
,”
Algorithmica
,
2
(
4
), pp.
477
521
.
8.
Sutner
,
K.
, and
Maass
,
W.
,
1988
, “
Motion Planning among Time Dependent Obstacles
,”
Acta Informatica
,
26
, pp.
93
122
.
9.
Brady, M., Hollerbach, J., Johnson T., Lozano-Perez, T., and Mason, M., 1982, Robot Motion: Planning and Control. MIT Press, Cambridge.
10.
Latombe, J. C., 1991, Robot Motion Planning, Kluwer Academic Publishers (SECS0124), Boston/Dordrecht/London.
11.
Laumond, J.-P., 1998, Robot Motion Planning and Control, Springer-Verlag, London Ltd.
12.
Fujimura
,
K.
, and
Samet
,
H.
,
1989
, “
Hierarchical Strategy for Path Planning Among Moving Obstacles
,”
IEEE Trans. Rob. Autom.
,
5
(
1
), pp.
61
69
.
13.
Fraichard
,
T.
,
1999
, “
Trajectory Planning in a Dynamic Workspace: a ‘State-Time Space’ Approach
,”
Advanced Robotics
,
13
(
1
), pp.
75
94
.
14.
Constantinescu
,
D.
, and
Croft
,
E. A.
,
2000
, “
Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators along Specified Paths
,”
J. Rob. Syst.
,
17
(
5
), pp.
223
249
.
15.
Kahn
,
M. E.
, and
Roth
,
B.
,
1971
, “
The Near-Minimum-Time Control of Open-Loop Articulated Kinematic Chains
,”
ASME J. Dyn. Syst., Meas., Control
,
93
, pp.
164
172
.
16.
Croft
,
E. A.
,
Benhabib
,
B.
, and
Fenton
,
R. G.
,
1995
, “
Near-Time Optimal Robot Motion Planning for On-Line Applications
,”
J. Rob. Syst.
,
12
, pp.
553
567
.
17.
Bobrow
,
J. E.
,
Dubowsky
,
S.
, and
Gibson
,
J. S.
,
1985
, “
Time-Optimal Control of Robotic Manipulators along Specified Paths
,”
Int. J. Robot. Res.
,
4
(
3
), pp.
3
17
.
18.
Shiller
,
Z.
,
1994
, “
On Singular Time-Optimal Control Along Specified Paths
,”
IEEE J. Rob. Autom.
,
10
(
4
), pp.
561
566
.
19.
Chen
,
Y.
, and
Desrochers
,
A. A.
,
1990
, “
A Proof of The Structure of The Minimum-Time Control Law of Robotic Manipulators Using a Hamiltonian Formulation
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
388
393
.
20.
Chiang, A. C., 1992, Elements of Dynamic Optimization, McGraw-Hill Inc.
21.
Jutard-Malinge
,
A. D.
, and
Bessonnet
,
G.
,
1997
, “
Optimal Path Planning of Manipulatory Systems Subjected to Non-Autonomous Motion Laws
,”
Robotica
15
, pp.
251
261
.
22.
Shin
,
K. G.
, and
McKay
,
N. D.
,
1986
, “
A Dynamic Programming Approach to Trajectory Planning of Robotic Manipulators
,”
IEEE Trans. Autom. Control
,
AC-31
(
6
), pp.
491
500
.
23.
Yen
,
C. W. V.
, and
Liu
,
T. Z.
,
1998
, “
Path Constrained Time-Optimal Trajectory Planning for X-Y Robots via an Efficient Dynamic Programming Method
,”
Robotica
,
16
, pp.
89
96
.
24.
Zheng
,
Y. F.
, and
Chen
,
M. Z.
,
1994
, “
Trajectory Planning for Two Manipulators to Deform Flexible Beams
,”
Robotics and Autonomous Systems
,
12
(
1–2
), pp.
55
67
.
25.
Lamiraux, F., and Kavraki, L. E., 1999, “Path Planning for Elastic Plates Under Manipulation Constraints,” Proc. IEEE Int. Conf. on Robotics & Automation, pp. 151–156.
26.
Chen
,
M. Z.
, and
Zheng
,
Y. F.
,
1995
, “
Vibration-Free Handling of Deformable Beams by Robot End-Effectors
,”
J. Rob. Syst.
,
12
(
5
), pp.
331
347
.
27.
Yuen, K. M., and Bone, G. M., 1996, “Robotic Assembly of Flexible Sheet Metal Parts,” Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1511–1516.
28.
Leissa, A. W., 1969, Vibration of Plates, Scientific and Technical Information Division, Office of Technology Utilization, National Aeronautics and Space Administration.
29.
Roark, R. J., 1989, Roark’s Formulas for Stress and Strain, McGraw-Hill Inc.
30.
Wu, C. F. J., Hamada, M., 2000, Experiments: Planning, Analysis, and Parameter Design Optimization, John Wiley and Sons.
31.
Fourer, R., Gay, D. M., and Kernighan B. W., 1993, AMPL: A Modeling Language for Mathematical Programming, Scientific Press.
32.
Conn, A. R., Gould, N. I. M., and Toint, Ph. L., 1992, Lancelot: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag Inc.
33.
Conn, A. R., Coulman, P. K., Haring, R. A., Morril, G. L., and Visweswariach, C., 1996, “Optimization of Custom MOS Circuits by Transistor Sizing,” 1996 IEEE/ACM International Conference on Computer-Aided Design, IEEE 1063-6757/96, pp. 174–180.
34.
Conn
,
A. R.
,
Gould
,
N. I. M.
, and
Toint
,
Ph. L.
,
1996
, “
Numerical Experiments with the LANCELOT Package (Release A) for Large-scale Nonlinear Optimization
,”
Math. Program.
,
73
, pp.
73
110
.
You do not currently have access to this content.