An optimization approach to computing the boundaries of the workspaces of planar manipulators is presented. This numerical method consists of finding a suitable radiating point in the output coordinate space and then determining the points of intersection of a representative pencil of rays, emanating from the radiating point, with the boundary of the accessible set. This is done by application of a novel constrained optimization approach that has the considerable advantage that it may easily be automated. The method is illustrated by its application to two planar mechanisms, namely a planar Stewart platform and a planar redundantly controlled serial manipulator. In addition to the exterior boundaries of the workspace, interior curves that represent configurations at which controllability and mobility may be limited, are also mapped. The optimization methodology, implemented here for the planar case, may readily be extended to spatial Stewart platforms. [S1050-0472(00)00304-4]

1.
Merle´t
,
J.-P.
,
1994
, “
Parallel Manipulators: State of the Art and Perspectives
,”
Adv. Robot.
,
8
, pp.
589
596
.
2.
Ceccarelli
,
M.
and
Sorli
,
M.
,
1998
, “
The Effects of Design Parameters on the Workspace of a Turin Parallel Robot
,”
Int. J. Robot. Res.
,
17
, pp.
886
902
.
3.
Stewart
,
D.
,
1965
, “
A Platform with Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
, pp.
371
381
.
4.
Fichter, E. F., and McDowell, E. D., 1980, “A Novel Design for a Robot Arm,” Proceedings, ASME International Computer Technology Conference, San Francisco, pp. 250–256.
5.
Bajpai
,
A.
, and
Roth
,
B.
,
1986
, “
Workspace and Mobility of a Closed-Loop Manipulator
,”
Int. J. Robot. Res.
,
5
, pp.
131
142
.
6.
Gosselin
,
C.
, and
Angeles
,
J.
,
1988
, “
The Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
,
110
, pp.
35
41
.
7.
Liu
,
K.
,
Fitzgerald
,
J. M.
, and
Lewis
,
F. L.
,
1993
, “
Kinematic Analysis of a Stewart Platform Manipulator
,”
IEEE Trans. Ind. Electron. Control Instrum.
,
40
, pp.
282
293
.
8.
Wang
,
L.-C. T.
, and
Hsieh
,
J.-H.
,
1998
, “
Extreme Reaches and Reachable Workspace Analysis of General Parallel Robot Manipulators
,”
J. Rob. Syst.
,
15
, pp.
145
159
.
9.
Gupta
,
K. C.
, and
Roth
,
B.
,
1982
, “
Design Considerations for Manipulator Workspaces
,”
ASME J. Mech. Des.
,
104
, pp.
704
712
.
10.
Kumar
,
A.
, and
Waldron
,
K. J.
,
1981
, “
The Workspace of a Mechanical Manipulator
,”
ASME J. Mech. Des.
,
103
, pp.
665
672
.
11.
Tsai
,
Y. C.
, and
Soni
,
A. H.
,
1981
, “
Accessible Region and Synthesis of Robot Arms
,”
ASME J. Mech. Des.
,
103
, pp.
803
811
.
12.
Hansen
,
J. A.
,
Gupta
,
K. C.
, and
Kazerounian
,
S. M. K.
,
1983
, “
Generation and Evaluation of the Workspace of a Manipulator
,”
Int. J. Robot. Res.
,
2
, pp.
22
31
.
13.
Ceccarelli
,
M.
,
1998
, “
A Formulation for the Workspace Boundary of General N-Revolute Manipulators
,”
Mech. Mach. Theory
,
31
, pp.
637
646
.
14.
Kumar
,
A.
,
1992
, “
Characterization of Workspaces of Parallel Manipulators
,”
ASME J. Mech. Des.
,
114
, pp.
368
375
.
15.
Gosselin
,
C.
,
1990
, “
Determination of the Workspace of 6-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
112
, pp.
331
336
.
16.
Merle´t
,
J.-P.
,
Gosselin
,
C. M.
, and
Mouly
,
N.
,
1998
, “
Workspaces of Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
33
, pp.
7
20
.
17.
Merle´t
,
J.-P.
,
1995
, “
Determination of the Orientational Workspace of a Parallel Manipulators
,”
J. Intell. Robot. Syst.
,
13
, pp.
143
160
.
18.
Arai, T., Cleary, K., Nakamura, T., Adachi, H., and Homma, K., 1990, “Design, Analysis and Construction of a Prototype Parallel Link Manipulator,” Proceedings, IEEE International Workshop on Intelligent Robots and Systems IROS ’90, IB Araki, Japan, pp. 205–212.
19.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
,
5
, pp.
157
182
.
20.
Gosselin
,
C.
and
Angeles
,
J.
,
1989
, “
The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,”
ASME J. Mech., Transm., Autom. Des.
,
111
, pp.
202
207
.
21.
Jo, D.-Y., and Haug, E. J., 1989, “Workspace Analysis of Closed Loop Mechanisms with Unilateral Constraints,” Proceedings, ASME Advances in Design Automation, DE, 2, pp. 53–60.
22.
Jo
,
D.-Y.
, and
Haug
,
E. J.
,
1989
, “
Workspace Analysis of Multibody Mechanical Systems Using Continuation Methods
,”
ASME J. Mech., Transm., Autom. Des.
,
111
, pp.
581
589
.
23.
Haug, E. J., Luh, C. M., Adkins, F. A., and Wang, J.-Y., 1994, “Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces,” Proceedings, IUTAM Summer School: Concurrent Engineering Tools for Dynamic Analyses and Optimization, Olhoff, N., ed., Aalborg, Denmark, pp. 1–13.
24.
Honnegger
,
M.
,
Codourey
,
A.
, and
Burdet
,
E.
,
1998
, “Adaptive Control of the Hexaglide, a 6 DOF Parallel Manipulator,” Technical Report: Institute of Robotics, ETH Zurich, Switzerland (http://www.ifr.mavt.ethz.ch).
25.
Snyman
,
J. A.
,
1982
, “
A New and Dynamic Method for Unconstrained Minimization
,”
Appl. Math. Model.
,
6
, pp.
449
462
.
26.
Snyman
,
J. A.
,
1983
, “
An Improved Version of the Original Leap-Frog Dynamic Method for Unconstrained Minimization
,”
Appl. Math. Model.
,
7
, pp.
216
218
.
27.
Snyman
,
J. A.
,
Roux
,
W. J.
, and
Stander
,
N.
,
1994
, “
A Dynamic Penalty Function Method for the Solution of Structural Optimization Problems
,”
Appl. Math. Model.
,
6
, pp.
453
460
.
28.
Snyman, J. A., 1999, “The LFOPC Leap-Frog Algorithm for Constrained Optimization,” Comput. Math. Appl., to be published.
29.
Haug
,
E. J.
,
Wang
,
J. Y.
, and
Wu
,
J. K.
,
1992
, “
Dextrous Workspaces of Manipulators: I, Analytical Criteria
,”
Mech. Struct. Mach.
,
20
, pp.
321
361
.
30.
Haug, E. J., Adkins, F. A., Qui, C., and Yen, J., 1994, “Analyses of Barriers to Control of Manipulators within Accessible Output Sets,” Technical Report R-174: Center for Computer Aided Design, The University of Iowa.
You do not currently have access to this content.