Simple expressions for the forward and inverse acceleration analyses of a six degree of freedom in-parallel manipulator are derived. The expressions are obtained by firstly computing the “accelerator” for a single Hooke-Prismatic-Spheric, HPS for short, connector chain in terms of the joint velocities and accelerations. The accelerator is a function of the line coordinates of the joint axes and of a sequence of Lie products of the same line coordinates. A simple expression for the acceleration of the prismatic actuator is obtained by forming the Klein form, or reciprocal product, with the accelerator and the coordinates of the line of the connector chain. Since the Klein form is invariant, the resulting expression can be applied directly to the six HPS connector chains of an in-parallel manipulator. As a required intermediate step, this contribution also derives the corresponding solutions for the forward and inverse velocity analyses. The authors believe that this simple method has applications in the dynamics and control of these in-parallel manipulators where the computing time must be minimized to improve the behavior of parallel manipulators. [S1050-0472(00)01303-9]

1.
Ball, R. S., 1900, The Theory of Screws, Cambridge University Press.
2.
Mises
,
R. v.
,
1924
, “
Motorrechnung, ein neues Hilfsmittel der Mechanik
,”
Z. Angew. Math. Mech.
,
4
, No.
2
, pp.
155
181
.
3.
Mises
,
R. v.
,
1924
, “
Anwendungen der Motorrechnung
,”
Z. Angew. Math. Mech.
,
4
, No.
3
, pp.
193
213
.
4.
Brand, L., 1947, Vector and Tensor Analysis, Wiley New York.
5.
Phillips
,
J.
, and
Hunt
,
K. H.
,
1964
, “
On the Theorem of the Three Axes in the Spatial Motion of Three Bodies
,”
Aus. J. Appl. Sci.
,
15
, pp.
267
287
.
6.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Oxford University Press, Oxford.
7.
Phillips, J., 1984, Freedom in Machinery. Volume 1, Introducing Screw Theory, Cambridge University Press Cambridge, U.K.
8.
Phillips, J., 1990, Freedom in Machinery. Volume 2, Screw Theory Exemplified, Cambridge University Press Cambridge, U.K.
9.
Karger, A., and Nova`k, J., 1985, Space Kinematics and Lie Groups, Gordon and Breach, New York.
10.
Keler, M. L., 1958, “Analyse und Synthese der Raumkurbelgetriebe mittels Raumliniengeometrie und dualer Gro¨sen,” Dissertation, T. H. Mu¨nchen.
11.
Keler
,
M. L.
,
1970
, “
Analyse und Synthese ra¨umlicher, spha¨rischer und ebener Getriebe in dual-komplexer Darstellung
,”
Feinwerktechnik
,
74
, pp.
341
351
.
12.
Keler
,
M. L.
,
1971
, “
Analyse und Synthese ra¨umlicher, spha¨rischer und ebener Getriebe in dual-komplexer Darstellung
,” Proceedings of the Third World Congress for The Theory of Machines and Mechanisms, Kupari, Yugoslavia,
Proc. R. Soc. London, Ser. A
, B, Paper B-5, pp.
49
62
.
13.
Yang
,
A. T.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
, pp.
300
308
.
14.
Yang
,
A. T.
,
1966
, “
Acceleration Analysis of Spatial Four-Link Mechanisms
,”
J. Eng. Ind.
,
88
, pp.
296
300
.
15.
Yang
,
A. T.
,
1971
, “
Inertia Force Analysis of Spatial Mechanisms
,”
J. Eng. Ind.
,
93
, pp.
27
32
.
16.
Yang, A. T., 1974, Calculus of Screws, in Basic Questions of Design Theory, Spillers, W. R., ed., North-Holland, Amsterdam, pp. 265–281.
17.
Dimentberg, F. M., 1965, The Screw Calculus and its Applications in Mechanics, English Translation AD680993, Clearinghouse for Federal Technical and Scientific Information.
18.
Keler
,
M. L.
, and
Jucha
,
J.
,
1985
, “
Ein Rechenverfahren zur Robotersteuerung bei vorgegebener Greiferbewegung mit sechs Freiheitsgraden
,”
Forsch. Ingenieurwes
,
51
, pp.
181
185
.
19.
Sugimoto
,
K.
,
1987
, “
Kinematic and Dynamic Analysis of Parallel Manipulators by Means of Motor Algebra
,”
ASME J. Mech. Des.
,
109
, pp.
3
7
.
20.
Sugimoto
,
K.
,
1990
,
Existence Criteria for Overconstrained Mechanisms: An Extension of Motor Algebra
,
ASME J. Mech. Des.
,
112
, pp.
295
298
.
21.
Rico
,
J. M.
, and
Duffy
,
J.
,
1996
, “
An Application of Screw Algebra to the Acceleration Analysis of Serial Chains
,”
Mech. Mach. Theory
,
31
, No.
4
, pp.
445
457
.
22.
Rico, J. M., and Duffy, J., 1995, “A Simple Method for the Velocity and Acceleration Analysis of In Parallel Platforms,” Proceedings of the Ninth World Congress on the Theory of Machines and Mechanisms, Milan Italy, 2, pp. 842–846.
23.
Gallardo, J., and Rico, J. M., 1998, “Screw Theory and Helicoidal Fields,” Proceedings of the 25th Biennial Mechanisms Conference, CD-Rom, Paper DETC98/MECH-5893.
24.
Fichter
,
E. F.
,
1986
, A Stewart Platform-Based Manipulator: General Theory and Practical Construction,
Int. J. Robot. Res.
,
5
, pp.
165
190
.
You do not currently have access to this content.