A broadly applicable formulation for determining the crossability of singular surfaces and curves in the workspace of serial robotic manipulators is presented. Singular surfaces and curves are analytically determined using nullspace rank-deficiency criteria of the mechanism’s constraint position Jacobian. Imposed joint limits in terms of inequality constraints are taken into account in the formulation. Directions of admissible normal movements on a surface or curve are established from the analysis of the normal curvature of singular surfaces. The normal curvature of a parametric surface used in this formulation, is determined from the first and second fundamental forms adapted from differential geometry. Definiteness properties of a quadratic form developed from the acceleration analysis determine admissible normal movements. For singular surfaces resulting from active joint constraints, definiteness properties are not enough and supplementary criteria are necessary. Two additional criteria are derived. This paper is a complete treatment of the problem of determining whether a singular surface/curve in the workspace is crossable. Planar and spatial numerical examples are presented to illustrate the formulation. [S1050-0472(00)01301-5]

1.
Sugimoto
,
K.
,
Duffy
,
J.
, and
Hunt
,
K. H.
,
1982
, “
Special Configurations of Spatial Mechanisms and Robot Arms
,”
Mechanism and Machine Theory
,
117
, No.
2
, pp.
119
132
.
2.
Wang
,
S. L.
, and
Waldron
,
K. J.
,
1987
, “
Study of the Singular Configurations of Serial Manipulators
,”
ASME J. Mech., Trans., and Autom. in Des.
,
109
, No.
1
, pp.
14
20
.
3.
Waldron
,
K. J.
,
Wang
,
S. L.
, and
Bolin
,
S. L.
,
1985
, “
A Study of the Jacobian Matrix of Serial Manipulators
,”
ASME J. Mech., Trans., and Autom. in Des.
,
107
, No.
2
, pp.
230
238
.
4.
Spanos
,
J.
, and
Kohli
,
D.
,
1985
, “
Workspace Analysis of Regional Structure of Manipulators
,”
ASME J. Mech., Trans., and Autom. in Des.
,
107
, pp.
219
225
.
5.
Shu, M., Kohli, D., and Dwivedi, S. H., 1986, Proceedings of the 6th World Congress on Theory of Machines and Mechanisms, New Delhi, India, pp. 988–993.
6.
Litvin
,
F. L.
,
Fanghella
,
P.
,
Tan
,
J.
, and
Zhang
,
Y.
,
1986
, “
Singularities in Motion and Displacement Functions of Spatial Linkages
,”
ASME J. Mech., Trans., and Autom. in Des.
,
108
, No.
4
, pp.
516
523
.
7.
Litvin
,
F. L.
,
Yi
,
Z.
,
Castelli
,
V. P.
, and
Innocenti
,
C.
,
1986
, “
Singularities, Configurations, and Displacement Functions for Manipulators
,”
Int. J. Rob. Res.
,
5
, No.
2
, pp.
52
65
.
8.
Lipkin
,
H.
, and
Pohl
,
E.
,
1991
, “
Enumeration of Singular Configurations for Robotic Manipulators
,”
ASME J. Mech., Trans., and Autom. in Des.
,
113
, pp.
272
279
.
9.
Shamir
,
T.
,
1990
, “
The Singularities of Redundant Robot Arms.
Int. J. Rob. Res.
,
2
, No.
1
, pp.
113
121
.
10.
Gorla, B., 1981, Influence of the Control on the Structure of a Manipulator from a Kinematic Point of View. Proc. 4th Symp. Theory and Practice of Rob. Manipulators, Zaborow, Poland, pp. 30–46.
11.
Lai
,
Z. C.
, and
Yang
,
D. C. H.
,
1986
, “
A New Method for the Singularity Analysis of Simple Six-link Manipulators
,”
Int. J. Rob. Res.
,
5
, No.
2
, pp.
66
74
.
12.
Ahmad, S., and Luo, S., 1988, Analysis of Kinematic Singularities for Robot Manipulators in Cartesian Coordinate Parameters, Proceedings of the IEEE International Conference on Robotics and Automation , Philadelphia, PA, pp. 840–845.
13.
Tourassis
,
V. D.
, and
Ang
,
M. H.
,
1992
, “
Identification and Analysis of Robot Manipulator Singularities
,”
Int. J. Rob. Res.
,
11
, pp.
248
259
.
14.
Soylu
,
R.
, and
Duffy
,
J.
,
1988
, “
Hypersurfaces of Special Configurations of Serial Manipulators and Related Concepts, Part II: Passive Joints, Configurations, Component Manifolds and Some Applications
,”
J. Rob. Syst.
,
5
, pp.
31
53
.
15.
Lai, Z. C., and Yang, D. C. H., 1984, “On the Singularity Analysis of Simple Six-link Manipulators,” ASME Paper No. 84-DET-220.
16.
Waldron, K. J., 1987, “Operating Barriers Within the Workspace of Manipulators,” Proceedings of the Society of Manufacturing Engineers, Chicago, IL, Robots II/17th ISIR, 8, pp. 35–46.
17.
Nielsen, L., deWitt, C. C., and Hagander, P., 1991, “Controllability Issues of Robots in Singular Configurations,” Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, CA.
18.
Chevallereau, C., and Daya, B., 1994, “A New Method for Robot Control in Singular Configurations with Motion in Any Cartesian Direction,” Proceedings of the IEEE International Conference on Robotics and Automation, 4, San Diego, CA, pp. 2692–2697.
19.
Chevallereau, C., 1996, “Feasible Trajectories for a Non Redundant Robot at a Singularity,” Proc. of IEEE International Conference on Robotics and Automation, Minneapolis, MN, pp. 1871–1876.
20.
Oblak
,
D.
, and
Kohli
,
D.
,
1988
, “
Boundary Surfaces, Limit Surfaces, Crossable and Noncrossable Surfaces in Workspace of Mechanical Manipulators
,”
ASME J. Mech., Trans., and Autom. in Des.
110
, pp.
389
396
.
21.
Pai
,
D. K.
, and
Leu
,
M. C.
,
1992
, “
Generecity and Singularities of Robot-manipulators
,”
IEEE Trans. Rob. Autom.
,
RA-8
, pp.
545
559
.
22.
Burdick J. W., 1991, “A Classification of 3r regional manipulator singularities and geometries,” Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, pp. 2670–2675.
23.
Burdick, J. W., 1992, “A Recursive Method for Finding Revolute-jointed Manipulator Singularities,” Proceedings of the IEEE International Conference on Robotics and Automation, Nice, France, pp. 448–453.
24.
Burdick
,
J. W.
,
1995
, “
Recursice Method for Finding Revolute-Jointed Manipulator Singularities
,”
ASME J. Mech. Des.
,
117
, pp.
55
63
.
25.
Karget
,
A.
,
1995
, “
Classification of Robot-Manipulators With Only Singular Configurations
,”
Mechanism and Machine Theory
,
30
, pp.
727
736
.
26.
Merlet
,
J. P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassman Geometry
,”
Int. J. Rob. Res.
,
8
, pp.
45
56
.
27.
Haug, E. J., Adkins, F. A., Qiu, C. C., and Yen, J., 1995, “Analysis of Barriers to Control of Manipulators Within Accessible Output Sets,” Proceedings of the 20th ASME Design Engineering Technical Conference, Boston, MA, 82, pp. 697–704.
28.
Haug, E. J., Lub, C. M., Adkins, F. A., and Wang, J. Y., 1994, “Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces,” Advances in Design Automation, ASME DE 69, No. 2, pp. 447–459.
29.
Bulca
,
F.
,
Angeles
,
J.
,
Zsombor-Murray
,
P. J.
,
1999
, “
On the Workspace Determination of Spherical Serial and Platform Mechanisms
,”
Mechanism & Machine Theory
,
34
, No.
3
, pp.
497
512
.
30.
Abdel-Malek
,
K.
, and
Yeh
,
H. J.
,
1997
, “
Analytical Boundary of the Workspace for General Three Degree-of-Freedom Mechanisms
,”
Int. J. Rob. Res.
16
, No.
2
, pp.
198
213
.
31.
Abdel-Malek
,
K.
, and
Yeh
,
H. J.
,
1997
, “
Geometric Representation of the Swept Volume Using Jacobian Rank-Deficiency Conditions
,”
Computer-Aided Design
,
29
, No.
6
, pp.
457
468
.
32.
Abdel-Malek
,
K.
, and
Yeh
,
H. J.
,
1997
, “
Path Trajectory Verification for Robot Manipulators in a Manufacturing Environment
,”
IMechE Journal of Engineering Manufacture
,
211
, Part B, pp.
547
556
.
33.
Abdel-Malek
,
K.
,
Adkins
,
F.
,
Yeh
,
H. J.
, and
Haug
,
E. J.
,
1997
, “
On the Determination of Boundaries to Manipulator Workspaces
,”
Robotics and Computer-Integrated Manufacturing
,
13
, No.
1
, pp.
63
72
.
34.
Abdel-Malek
,
K.
,
Yeh
,
H. J.
, and
Khairallah
,
N.
,
1999
, “
Workspace, Void, and Volume Determination of the General 5DOF Manipulator
,”
Mechanics of Structures and Machines
,
27
, No.
1
, pp.
91
117
.
35.
Farin, G., 1993. Curves and Surfaces for Computer-Aided Geometric Design, Academic Press, Inc., San Diego, CA.
You do not currently have access to this content.