An extended pattern search algorithm is introduced for efficient component layout optimization. The algorithm is applicable to general layout problems, where component geometry can be arbitrary, design goals can be multiple and spatial constraint satisfactions can be of different types. Extensions to pattern search are introduced to help the algorithm to converge to optimal solutions by escaping inferior local minima. The performance on all of the test problems shows that the algorithm runs one-to-two orders of magnitude faster than a robust simulated annealing-based algorithm for results with the same quality. The algorithm is further extended to solve a concurrent layout and routing problem, which demonstrates the ability of the algorithm to apply new pattern strategies in search and to include different objective functions in optimization. [S1050-0472(00)01901-2]

1.
Sechen, C., 1988, VLSI Placement and Global Routing Using Simulated Annealing, Kluwer Academic Publishers, Boston.
2.
Fujita, K., Akagi, S., and Hase, H., 1991, “Hybrid Approach to Plant Layout Design Using Constraint Directed Search and an Optimization Technique,” Advances in Design Automation 1991: Proceedings of the 17th ASME Design Automation Conference, 1, pp. 131–138.
3.
Jajodia
,
S.
,
Minis
,
I.
,
Harhalakis
,
G.
, and
Proth
,
J. M.
,
1992
, “
CLASS: Computerized Layout Solutions Using Simulated Annealing
,”
Int. J. Product. Res.
,
30
, pp.
95
108
.
4.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
,
1998
, “
A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout
,”
Comput.-Aided Design
,
30
, No.
10
, pp.
781
790
.
5.
Hills, W., and Smith, N., 1997, “A New Approach to Spatial Layout Design in Complex Engineered Products,” Proceedings of the International Conference on Engineering Design (ICED 97), Tampere, Finland, August 19–21.
6.
Torczon
,
V.
, and
Trosset
,
M.
,
1997
, “
From Evolutionary Operation to Parallel Direct Search: Pattern Search Algorithms for Numerical Optimization
,”
Comput. Sci. Stat.
,
29
, pp.
396
401
.
7.
Coffman, E. G., Jr., Garey, M. R., and Johnson, D. S., 1984, “Approximation Algorithms for Bin-Packing—An Updated Survey,” Algorithm Design for Computer System Design, Ausiello, G., Lucertini, M., and Serafini, P., eds., Springer-Verlag, New York, pp. 49–106.
8.
Dyckhoff
,
H.
,
1990
, “
A Typology of Cutting and Packing Problems
,”
Eur. J. Oper. Res.
,
44
, pp.
145
159
.
9.
Dai, Z., and Cha, J., 1994, “An Octree Based Heuristic Algorithm for 3-D Packing,” Advances in Design Automation 1994: Proceedings of the 20th ASME Design Automation Conference, 2, pp. 125–133.
10.
Landon
,
M. D.
, and
Balling
,
R. J.
,
1994
, “
Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,”
ASME J. Mech. Des.
,
116
, pp.
375
381
.
11.
Kim
,
J. J.
, and
Gossard
,
D. C.
,
1991
, “
Reasoning on the Location of Components for Assembly Packaging
,”
ASME J. Mech. Des.
,
113
, pp.
402
407
.
12.
Wodziack, J., and Fadel, G. M., 1996, “Bi-Objective Optimization of Components Packing Using a Genetic Algorithm,” AIAA-96-4022-CP, pp. 352-362, Paper presented at the NASA/AIAA/ISSMO Multidisciplinary Design and Optimization Conference, Seattle, WA
13.
Corcoran III, A. L. and Wainwright, R. L., 1992, “A Genetic Algorithm for Packing in Three Dimensions,” Applied Computing: Technological Challenges of the 1990’s—Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing, Kansas City, KS, pp. 1021–1030.
14.
Kawakami, T., Minagawa, M., and Kakazu, Y., 1991, “Auto Tuning of 3-D Packing Rules Using Genetic Algorithms,” Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS’91, 3, pp. 1319–1324.
15.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, Jr.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
, No.
4598
, pp.
671
679
.
16.
Wong, D. F., Leong, H. W., and Liu, C. L., 1988, Simulated Annealing for VLSI Design, Kluwer Academic Publishers, Boston.
17.
Smith
,
N.
,
Hills
,
W.
, and
Cleland
,
G.
,
1996
, “
A Layout Design System for Complex Made-to-Order Products
,”
ASME J. Mech. Des.
,
7
, No.
4
, pp.
363
375
.
18.
Szykman
,
S.
, and
Cagan
,
J.
,
1995
, “
A Simulated Annealing Approach to Three-Dimensional Component Packing
,”
ASME J. Mech. Des.
,
117
,
2A
, pp.
308
314
.
19.
Szykman
,
S.
, and
Cagan
,
J.
,
1996
, “
Synthesis of Optimal Non-Orthogonal Routes
,”
ASME J. Mech. Des.
,
118
, No.
3
, pp.
419
424
.
20.
Szykman
,
S.
, and
Cagan
,
J.
,
1997
, “
Constrained Three Dimensional Component Layout Using Simulated Annealing
,”
ASME J. Mech. Des.
,
119
, No.
1
, pp.
28
35
.
21.
Kolli, A., Cagan, J., and Rutenbar, R. A., 1996, “Packing of Generic, Three Dimensional Components Based on Multi-Resolution Modeling,” Proceedings of the 22nd ASME Design Automation Conference (DAC-1479), Irvine, CA, August 19–22.
22.
Huang, M. D., Romeo, F., and Sangiovanni-Vincentelli, A., 1986, “An Efficient General Cooling Schedule for Simulated Annealing,” ICCAD-86: IEEE International Conference on Computer Aided Design -Digest of Technical Papers, Santa Clara, CA, November 11–13, pp. 381–384.
23.
Lam, J., and Delosme, J., 1988, “Performance of a New Annealing Schedule,” Proceedings of the 25th ACM/IEEE Design Automation Conference, pp. 306–311.
24.
Hooke
,
R.
, and
Jeeves
,
T. A.
,
1961
, “
Direct Search Solution of Numerical and Statistical Problems
,”
J. Assoc. Comput. Mach.
,
8
, No.
2
, pp.
212
229
.
25.
Lewis
,
R. M.
, and
Torczon
,
V.
,
1996
, “
Pattern Search Algorithms for Bound Constrained Minimization,” TR 96-20, ICASE, NASA Langley Research Center, Hampton, VA 23681-0001
,
SIAM J. Optimization
,
9
, No.
4
, pp.
1082
1099
.
26.
Lewis, R. M., and Torczon, V., 1996, “Rank Ordering and Positive Bases in Pattern Search Algorithms,” TR 96-71, ICASE, NASA Langley Research Center, Hampton, VA 23681-0001.
27.
Torczon
,
V.
,
1997
, “
On the Convergence of Pattern Search Methods
,”
SIAM J. Optimization
,
7
, No.
1
, pp.
1
25
.
28.
Torczon, V., 1992, “PDS: Direct Search Methods for Unconstrained Optimization on Either Sequential or Parallel Machines,” CRPC Technical Report: CRPC-TR92206, Center for Research on Parallel Computing Rice University, Houston, TX.
29.
Szykman
,
S.
,
Cagan
,
J.
, and
Weisser
,
P.
,
1998
, “
An Integrated Approach to Optimal Three Dimensional Layout and Routing
,”
ASME J. Mech. Des.
,
120
, No.
3
, pp.
510
512
.
You do not currently have access to this content.