An analytical solution is proposed by the authors in order to take into account the effects of friction in the calculation of conical disk springs. The new formulation allows a more accurate estimate of the load corresponding to a given displacement, but it implies the knowledge of the friction coefficient f between the spring and the supporting surfaces. The reported numerical examples show that, disregarding friction effects, the maximum error committed in the evaluation of the load is in the range 2–5%, with f = 0.14 (average friction coefficient value determined experimentally on commercial conical disk springs with different geometry). Comparison with both experimental and finite element calculations show a very good agreement of the analytical prediction.

1.
Almen
J. O.
,
Laszlo
A.
,
1935
, “
The Uniform-Section Disk Spring
,”
Transactions of the ASME
, Vol.
58
, pp.
305
313
.
2.
Bagavathiperumal
P.
,
Chandrasekaran
K.
,
Manivasagam
S.
,
1991
, “
Elastic Load-displacement Predictions for Coned Disc Springs Subjected to Axial Loading Using the Finite Element Method
,”
Journal of Strain Analysis
, Vol.
26
, pp.
147
152
.
3.
Barbato, G., Curti, G., Montanini, R., 1998 “Experimental Evaluation of the Friction Coefficient in Conical Disk Springs,” (to be published).
4.
Boivin
M.
,
Bahuaud
J.
,
1974
, “
Calcul des ressorts diaphragmes
,”
MECANIQUE
, Vol.
298
, pp.
24
31
.
5.
Curti, G., Montanini, R., 1996, “Theoretical, Numerical and Experimental Analysis of Conical Disk Springs,” Proceedings XXV AIAS National Conference—International Conference on Material Engineering, Gallipoli, Italy, Vol. I, pp. 573–581.
6.
Curti
G.
,
Orlando
M.
,
Podda
G.
,
1981
, “
Metodo semplificato di calcolo per molle a disco conico
,”
II Filo Metallico
, Vol.
28
, pp.
174
176
.
1.
Curti
G.
,
Orlando
M.
,
1980
, “
Ein Neus Berechnungsverfahren Fur Tellerfedern
,”
Draht
, Vol.
30
, pp.
17
22
.
2.
II Filo Metallico
, Vol.
27
, pp.
47
52
.
1.
Curti, G., Orlando, M., 1976, “A New Calculation of Coned Annular Disk Spring,” ASME Winter Annual Meeting, New York.
2.
Curti
G.
,
Orlando
M.
,
1981
, “
Geschlitze Tellerfedern Spannungen und Verformungen
,”
Draht
, Vol.
32
, pp.
610
615
.
3.
Curti
G.
,
Raffa
F. A.
,
1992
Material Nonlinearity Effects in the Stress Analysis of Conical Disk Springs
,”
Transactions of the ASME
, Vol.
114
, pp.
238
244
.
4.
Handbook, 1992, Molle a tazza CB, Christian Bauer ed., KG, Welzheim.
5.
Hu¨bner
W.
,
1982
, “
Deformationen und Spannungen bei Tellerfedern
,”
Konstruction
, Vol.
34
, pp.
387
392
.
6.
Hu¨bner
W.
,
Emmerling
F. A.
,
1982
, “
Axialsymmetrsche große Defromationen einer elastischen Kegelschale
,”
ZAMM
, Vol.
62
, pp.
408
411
.
7.
Shremmer
G.
,
1973
, “
The Slotted Conical Disk Spring
,”
Transaction of the ASME
, Vol.
8
, pp.
765
770
.
8.
Timoshenko
S.
,
1936
,
Strength of Materials, 3rd print.
, Vol.
2
, McMillan, ed., pp.
527
528
.
9.
Timoschenko, S., Woinowsky-Krieger, S., 1985 Theory of Plates and Shells, 2nd edition, McGraw-Hill International ed., New York.
10.
Wagner
W.
,
Wetzel
M.
,
1987
, “
Berechnung von Tellerfedern mit Hilfe der Methode der Finite Elemente
,”
Konstruktion
, Vol.
39
, No.
4
, pp.
147
150
.
This content is only available via PDF.
You do not currently have access to this content.