This paper is concerned with the theory of differential equations of motion for a class of unrooted (i.e., without kinematical constraints to a Galilean frame) mechanisms called orthotropic multibody-systems and the application of this theory to the solution of three mechanisms: the Hoberman-sphere, the Wohlhart Octoid and the Fulleroid. Dedicated to O. Univ.-Prof. Dipl.-Ing. Dr. Techn. Karl Wohlhart on his 70th birthday
Issue Section:
Research Papers
1.
Christ, R., and Dollens, D., 1993, New York, Nomadic Design Barcelona, Editorial Gustavo Gili, 152 p.
2.
Geiringer, H., 1942, Geometrical Foundations of Mechanics, Brown University, Lectures for Advanced Instruction and Research in Mechanics, Providence R.I. 1942, 156 p.
3.
Gylden
H.
1871
, Recherches sur la Rotation de la Terre, Actes de la Socie´te Royale des Sciences d’Upsala
, 1871, Ser. III, Vol. VIII
, pp. 1
–21
.4.
Hamel
G.
1904
, Die Lagrange-Eulersche Gleichungen der Mechanik
, Zeitschrift fu¨r Mathematik und Physik
, Vol. 50
, pp. 1
–57
.5.
Lur’e, A. I., 1961, Me´canique Analytique: 2 Vols., Louvain (Belgium); Librairie Universitaire (1968); author erroneously appears as L. Lur’e. Original in Russian (1961). (See: Vol. 1: 17, 19, pp. 365–422).
6.
Mises
R.
1924
, Motorrechnung, ein neues Hilfsmittel der Mechanik
, Zeitschrift fu¨r angewandte Mathematik und Mechanik
, 1924, Vol. 4
, No. 2
, pp. 155
–181
and Vol. 4, No. 3, pp. 193–213.7.
Mises, R., 1996, “Motor Calculus, a New Theoretical Device in Mechanics, English version of [Mises, 1924]. Translated by Wohlhart, K. and Baker, E., Institute for Mechanics, Technische Universita¨t Graz, Austria, 1996.
8.
Papastavridis
J. G.
1998
, “A Panoramoc Overwiew of the Principles and Equations of Motion of Advanced Engineering Dynamics
,” ASME APPLIED MECHANICS REVIEW
, Vol. 51
, No. 4
, 1998, pp. 239
–265
.9.
Pars, L. A., 1965, A Treatise on Analytical Dynamics, John Wiley & Sons. New York, 1965, pp. 187–189.
10.
Pfister
F.
1995
/1
, “A Dynamical Formalism for Unrooted Systems of Rigid Bodies
,” Acta Mechanica
, 1995, Vol. 112
, No. 1–4
, pp. 203
–221
.11.
Pfister, F., 1995/2, “The Gylden- or Canonical Form of Motion Equations for Unrooted Systems of Rigid Bodies,” Proceedings IFToMM 9th World Congress on the Theory of Machines and Mechanisms, Milano, Italy, 1995, Vol. 1, pp. 1556–1560.
12.
Pfister, F., 1995/3, “Contributions a´ la Me´canique Analytique des Syste`mes Multicorps,” Ph. D. Thesis. Lyon (France); Institut National des Sciences Applique´es (INSA) de Lyon (1995), 266 p.
13.
Platrier, M. Ch., 1936, La masse en cine´matique et the´orie des tenseurs du second ordre, Cours de l’Ecole Polytechnique, Tome II, Paris, France, Hermann, 1936, 83 p.
14.
Schneider, M., 1992, Himmelsmechanik, Mannheim, Germany, B.I. Wissenschafts-verlag (1992, 3rd edition), 658 p.
15.
Segner, A., 1755, Specimen Theoriae Turbinum, Halae Typis Gebaverianis, 27 April 1755, 40 p.
16.
Wohlhart
K.
1995
/1
, Das Dreifach Plansymmetrische “Oktoid
,” und seine Punk-tbahnen, Mathematica Pannonica
, Vol. 6
, No. 2
, 1995, pp. 243
–265
.17.
Wohlhart, K., 1995/2, “New Overconstrained Spheroidal Linkages,” World Congress on the Theory of Machines and Mechanisms, Milano, Italy, 1995, Vol. 1, pp. 149–154.
18.
Wohlhart
K.
1997
, “Kinematics and Dynamics of the Fulleroid
,” Multibody System Dynamics
, Vol. 1
, No. 2
, 1997, pp. 241
–258
.19.
Wohlhart, K., 1998, “Double Chain Mechanisms,” Deployable Structures: Theory and Applications, IUTAM Symposium: Cambridge, U.K., Sept. 6–8, 1998. Preprint.
This content is only available via PDF.
Copyright © 1999
by The American Society of Mechanical Engineers
You do not currently have access to this content.