This paper presents a new scheme for the first- and second-order design sensitivity analysis of the two-dimensional elastic problem by using Trefftz method. In the Trefftz method, the physical quantities are approximated by superposition of regular T-complete functions. Therefore, direct differentiation of the approximate expressions with respect to design parameters leads to the regular expressions of the sensitivities. The present schemes are applied to some examples in order to confirm the validity.

1.
Mlejnek
H. P.
,
Jehle
U.
, and
Schirrmacher
R.
, “
Second Order Approximations in Structural Genesis and Shape Finding
,”
Int. J. Num. Meth. Eng.
, Vol.
34
, pp.
853
872
,
1992
.
2.
Haftka
R. T.
, “
Second-Order Sensitivity Derivatives in Structural Analysis
,”
AIAA J.
, Vol.
20
, No.
12
, pp.
1765
1766
,
1982
.
3.
Haftka
R. T.
, and
Mroz
Z.
, “
First- and Second-Order Sensitivity Analysis of Linear and Nonlinear Structures
,”
AIAA J.
, Vol.
24
, No.
7
, pp.
1187
1192
,
1986
.
4.
Sobieszczanski-Sobieski
J.
, “
Higher Order Sensitivity Analysis of Complex, Coupled Systems
,”
AIAA J.
, Vol.
28
, No.
4
, pp.
756
758
,
1990
.
5.
Haug
E. J.
, and
Ehle
P. E.
, “
Second-Order Design Sensitivity Analysis of Mechanical System Dynamics
,”
Int. J. Num. Meth. Eng.
, Vol.
18
, pp.
1699
1717
,
1982
.
6.
Haug
E. J.
, “
Second-Order Design Sensitivity Analysis of Structural Systems
,”
AIAA J.
, Vol.
19
, No.
8
, pp.
1087
1088
,
1991
. Technical note.
7.
Zhang
Q.
, and
Mukherjee
S.
, “
Second-Order Design Sensitivity Analysis for Linear Elastic Problems by the Derivative Boundary Element Method
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
86
, pp.
321
335
,
1991
.
8.
Hou
J.-W.
, and
Sheen
J.
, “
Numerical Methods for Second-Order Shape Sensitivity Analysis with Applications to Heat Conduction Problems
,”
Int. J. Num. Meth. Eng.
, Vol.
36
, pp.
417
435
,
1993
.
9.
Bonnet
M.
, “
Regularized BIE Formulations for First- and Second-Order Shape Sensitivity of Elastic Fields
,”
Comp. Struct.
, Vol.
56
, No.
5
, pp.
799
811
,
1995
.
10.
Barone
M. R.
, and
Yang
R. J.
, “
A Boundary Element Approach for Recovery of Shape Sensitivities in Three-Dimensional Elastic Solids
,”
Comp. Meth. Appl. Mech. Eng.
, Vol.
74
, pp.
69
82
,
1989
.
11.
Defouny, M., “Boundary Element Method and Design Optimization,” In C. A. Brebbia, W. L. Wendland, and G. Kuhn, editors, Proc. Boundary Elements IX, pp. 463–472. Comp. Mech. Pub./Springer Verlag, 1987.
12.
Matsumoto, T., Tanaka, M., and Hirata, H., “Design Sensitivity Formulation of Boundary Stresses Using Boundary Integral Equation for Displacement Gradients,” In M. Tanaka, C. A. Brebbia, and T. Honma, editors, Boundary Elements XII (Proc. 12th Int. Conf. on BEM, Sapporo, Japan, 1990), pp. 205–214. Comp. Mech. Pub./Springer Verlag, 1990.
13.
Mukherjee
S.
, and
Chandra
A.
, “
A Boundary Element Formulation for Design Sensitivities in Materially Nonlinear Problems
,”
Acta Mechanica
, Vol.
78
, pp.
243
253
,
1989
.
14.
Trefftz, E., “Ein Gegenstu¨ck zum ritzschen Verfahren,” Proc. 2nd Int. Cong. Appl. Mech., Zurich, pp. 131–137, 1926.
15.
Herrera, I., Boundary Methods: An Algebraic Theory, Pitman, 1984.
16.
Kamiya, N., and Kita, E., Advances in Engineering Software: Special Issue on Trefftz Method 70 Years, Vol. 24. Elsevier Science Pub., 1995.
17.
Haug, E. J., Choi, K. K., and Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, Inc., 1st edition, 1986.
18.
Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, McGraw-Hill Ltd., 3rd edition, 1982.
19.
Gourgeon, H., and Herrera, I., “Boundary Methods. C-Complete Systems for the Biharmonic Equations,” In C. A. Brebbia, editor, Boundary Element Methods (Proc. 3rd Int. Conf. on BEM, Irvine, Calif., 1981), pp. 431–441. CML Pub./Springer Verlag, 1981.
20.
Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J. Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen D., LAPACK User’s Manual, SIAM, 2nd edition, 1995.
This content is only available via PDF.
You do not currently have access to this content.