In this paper we examine the sensitive dependence on the initial conditions of the Newton-Raphson search technique. It is demonstrated that this sensitivity has a fractal nature which can be effectively utilized to find all solutions to a nonlinear equation. The developed technique uses an important feature of fractals to preserve shape of basins of attraction on infinitely small scales.

1.
Allgower
E. L.
, and
Georg
K.
,
1980
, “
Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations
,”
SIAM Rev.
Vol.
22
, pp.
28
85
.
2.
Baillieul, J., 1985, “Kinematic Programming Alternatives for Redundant Manipulators,” Proc. of IEEE International Conference on Robotics And Automation, Raleigh, N. Carolina.
3.
Baker, D. R., and Wampler, C. W., 1988, “On the Inverse Kinematics of Redundant Manipulators,” International J. of Robotics Research, Vol. 7-2.
4.
Becker, K-H., and Dorfler, M., 1989, “Dynamical systems and Fractals,” Cambridge University Press.
5.
Falconer, K., 1990., Fractal Geometry, John Wiley & Sons, Chichester, England.
6.
Fatou
M. P.
,
1919
, “
Sur les equations fonctionelles
,”
Bull. Soc. Math. France
,
47
, pp.
161
271
.
7.
Garcia, C. B., and Zangwill, W. I., 1981, Pathways to Solutions, Fixed Points and Equilibria, Prentice-Hall, Englewood Cliffs, NJ.
8.
Gupta, K. C., 1993, “Computational Kinematics,” The First 40 Years of Modern Kinematics, A. Erdman, ed., J. Wiley.
9.
Jovanovic, V., 1997, “Identifying, Utilizing and Improving Chaotic Numerical Instabilities in Computational Kinematics,” Ph.D. Thesis, The University of Connecticut.
10.
Jovanovic, V. T., and Kazerounian, K., 1995, “Chaos in Computational Kinematics,” Proceedings of 4th National Applied Mechanisms and Robotics Conference, Ohio, Cincinnati, December 1995.
11.
Julia
G.
,
1918
, “
Memoire sur l’iteration des fonctions rationelles
,”
J. Math. Pures Appl.
, Vol.
8
, pp.
47
245
.
12.
Mandelbrot, B. B., 1982, The Fractal Geometry of Nature, W. H. Freeman and Co., New York.
13.
Morgan, A. P., 1986, Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems, Prentice-Hall, Englewood Cliffs, NJ.
14.
Morgan
A. P.
, and
Sommese
A. J.
,
1987
a, “
A Homotopy for Solving General Polynomial Systems that Respects M-homogeneous Structures
,”
Appl. Math. Comput.
, Vol.
24
, pp.
101
103
.
15.
Morgan
A. P.
, and
Sommese
A. J.
,
1987
b, “
Computing All Solutions to Polynomial Systems Using Homotopy Continuation
,”
Appl. Math. Comput.
, Vol.
24
, pp.
115
138
.
16.
Lorenz
E. N.
,
1963
, “
Deterministic Non-periodic Flow
,”
J. Atmos. Sci.
Vol.
20
, pp.
130
141
.
17.
Poincare´, H., 1921, The Foundation of Science: Science and Method, English Translation, The Science Press, New York.
18.
Raghavan
M.
, and
Roth
B.
,
1995
, “
Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators
,” 50th Anniversary Design Issue,
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
117
, pp.
71
79
.
19.
Roth
B.
, and
Freudenstein
F.
,
1963
a, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME Journal of Engineering for Industry
, Vol.
85B-3
. pp.
289
306
.
20.
Roth
B.
, and
Freudenstein
F.
,
1963
b, “
Numerical Solution of Systems of Nonlinear Equations
,”
J. Assoc. Computing Machinery
, Vol.
10
, pp.
550
556
.
21.
Strogatz, S. H., 1994, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering, Adisson-Wesley, Reading, MA.
22.
Wampler, C. W., and Morgan, A. P., 1987, “Solving the 6R Inverse Position Problem Using a Generic-Case Solution Methodology,” General Motors Research Publication GMR-6702, Warren, MI.
This content is only available via PDF.
You do not currently have access to this content.