Using rational motions it is possible to apply many fundamental B-spline techniques to the design of motions. The present paper summarizes the basic theory of rational motions and introduces a linear control structure for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques. The methods presented in this paper can be applied to various problems in computer animation as well as in robotics.

1.
Bodduluri
R. M. C.
, and
Ravani
B.
,
1993
, “
Design of Developable Surfaces Using Duality Between Plane and Point Geometries
,”
Computer-Aided Design
, Vol.
25
, pp.
621
632
.
2.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North-Holland Publishing Company, Amsterdam, New York, Oxford.
3.
do Carmo, M., 1976, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs.
4.
Coxeter, H. S. M., 1964, Projective Geometry, Blaisdell, New York.
5.
Darboux, G., 1895, “Sur les mouvements algebriques,” Note III in G. Koenig’s Lec¸ons de Cine´matique, Hermann, Paris.
6.
Farin, G., 1993, Curves and Surfaces for Computer Aided Geometric Design, 3rd ed., Academic Press, Boston.
7.
Ge, Q. J., and Ravani, B., 1991, “Computer Aided Geometric Design of Motion Interpolants,” Proc. ASME Design Automation Conference, DE-Vol. 32–2, pp. 33–41.
8.
Ge
Q. J.
, and
Ravani
B.
,
1994
, “
Geometric Construction of Be´zier Motions
,”
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
116
, pp.
749
755
.
9.
Handscomb
D.
,
1987
, “
Knot-elimination: Reversal of the Oslo Algorithm
,”
International Series of Numerical Mathematics
, Vol.
81
, Birkha¨user, Basel, pp.
103
111
.
10.
Horsch, Th., and Ju¨ttler, B., “Spline Interpolation for Industrial Robots and its Application,” in preparation.
11.
Hoschek, J., and Lasser, D., 1993, Fundamentals of Computer Aided Geometric Design, Peters, Wellesley.
12.
Johnstone, J., and Williams, J., 1995, “Rational Control of Orientation for Animation,” Proceedings of Graphics Interface ’95, pp. 179–186.
13.
Ju¨ttler
B.
,
1993
, “
U¨ber zwangla¨ufige rationale Bewegungsvorga¨nge
,”
Sitzungsber. d. O¨sterr. Akad. d. Wiss
, Vol.
202
, pp.
117
132
.
14.
Ju¨tter
B.
,
1994
, “
Visualization of Moving Objects Using Dual Quaternion Curves
,”
Computers & Graphics
, Vol.
18
, No.
3
, pp.
315
326
.
15.
Ju¨ttler, B., 1994, Rationale Be´zierdarstellung ra¨umlicher Bewegungsvorga¨nge und ihre Anwendung zur Beschreibung bewegter Objekte, Dissertation, Technische Hochschule Darmstadt, Verlag Shaker, Aachen.
16.
Ju¨ttler, B., 1995, “Spatial Rational Motions and Their Application in Computer Aided Geometric Design,” in M. Dæhlen, T. Lyche, und L. L. Schumaker, eds., Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, La Vergne TN.
17.
Keil, C., 1995, Approximation gemessener Kniebewegungen, Diplomarbeit, TH Darmstadt.
18.
Mo̸rken
K.
,
1991
, “
Some Identities for Products and Degree Raising of Splines
,”
Constructive Approximation
, Vol.
7
, pp.
195
208
.
19.
Nielson, G., 1988, “Bernstein/Be´zier Curves and Splines on Spheres Based Upon a Spherical de Casteljau Algorithm,” Arizona State University Technical Report TR-88-028.
20.
Nielson, G., 1989, “Applications of an Affine Invariant Metric,” in L. L. Schumaker, T. Lyche, eds., Mathematical Methods in Computer Aided Geometric Design, Academic Press.
21.
Nu¨rnberger, G., 1989, Approximation by Spline Functions, Springer, Berlin.
22.
Park
F. C.
, and
Ravani
B.
,
1995
, “
Be´zier Curves on Riemannian Manifolds and Lie Groups with Kinematic Applications
,”
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
117
, pp.
36
40
.
23.
Pletinckx
D.
,
1989
, “
Quaternion Calculus as a Basic Tool in Computer Graphics
,”
The Visual Computer
Vol.
5
, pp.
2
13
.
24.
Pottmann
H.
, and
Farin
G.
,
1995
, “
Developable Rational Be´zier and B-spline Surfaces
,”
Computer Aided Geometric Design
, Vol.
5
, pp.
513
531
.
25.
Rath
W.
,
1993
, “
Matrix Groups and Projective Kinematics
,”
Abh. Math. Sem. Univ. Hamburg
, Vol.
63
, pp.
177
196
.
26.
Ro¨schel
O.
,
1985
, “
Rationale ra¨umliche Zwangla¨ufe vierter Ordnung
,”
Sitzungsber. d. O¨sterr. Akad. d. Wiss.
, Vol.
194
, pp.
185
202
(abstracted in Math. Reviews 87k: 53016).
27.
Schumaker, L. L., 1981, Spline Functions: Basic Theory, Wiley-Interscience, New York.
28.
Shoemake
K.
,
1985
, “
Animating Rotation with Quaternion Curves
,”
ACM Siggraph
, Vol.
19
, pp.
245
254
.
29.
Wagner, M. G., 1994, “A Geometric Approach to Motion Design,” PhD thesis, Technische Universita¨t Wien.
30.
Wagner
M. G.
,
1995
, “
Planar Rational B-Spline Motions
,”
Computer Aided Design
, Vol.
27
, pp.
129
137
.
31.
Weiss, E. A., 1935, Einfu¨hrung in die Liniengeometrie und Kinematik, Teubners Mathematische Leitfa¨den, Vol. 41, Leipzig und Berlin.
32.
Wunderlich
W.
,
1984
, “
Kubische Zwangla¨ufe
,”
Sitzungsber. d. O¨sterr. Akad d. Wiss.
, Vol.
193
, pp.
45
68
(abstracted in Math. Reviews 86h: 53011).
This content is only available via PDF.
You do not currently have access to this content.