A new design optimization method is described for finding global solutions of models with a nonconvex objective function and nonlinear constraints. All functions are assumed to be generalized polynomials. By introducing new variables, the original model is transformed into one with a linear objective function, one convex and one reversed convex constraint. A two-phase algorithm that includes global feasible search and local optimal search is used for globally optimizing the transformed model. Several examples illustrate the method.

1.
Beightler, C., and Phillips, D. T., 1976, Applied Geometric Programming, John Wiley & Sons, New York.
2.
Dixon, L. C. W., and Szego¨, G. P., eds, 1975, Towards Global Optimization 1, Noth-Holland, Amsterdam.
3.
Dixon, L. C. W., and Szego¨, G. P., eds, 1978, Towards Global Optimization 2, Noth-Holland, Amsterdam.
4.
Hoffman
K. L.
,
1981
, “
A Method for Globally Minimizing Concave Functions over Convex Sets
,”
Mathematical Programming
, Vol.
20
, pp.
22
32
.
5.
Jain
P.
, and
Agogino
A. M.
,
1988
, “
Optimal Design of Mechanisms Using Simulated Annealing: Theory and Applications
,”
Advances in Design Automation
, Rao, S. S., ed., ASME, DE-Vol.
14
, pp.
233
238
.
6.
Lo, C., 1991, “Global Optimization of Nonconvex Generalized Polynomial Design Models,” Doctoral dissertation, The University of Michigan.
7.
McCormick, G. P., 1983, Nonlinear Programming: Theory, Algorithms and Applications, John Wiley & Sons, New York.
8.
Papalambros, P. Y., 1988, “Remarks on Sufficiency of Constraint-bound Solutions in Optimal Design,” Advances in Design Automation-1988, S. S. Rao, ed., ASME DE-Vol. 14, New York, 1988. Also, ASME Journal of Mechanical Design in press.
9.
Papalambros, Y. P., and Wilde, D. J., 1988, Principles of Optimal Design, Cambridge University Press, New York.
10.
Pardalos, P. M., and Rosen, J. B., 1987, Constrained Global Optimization: Algorithms and Applications, Springer-Verlag, Berlin.
11.
Rinnooy Kan
A. H. G.
, and
Timmer
G. T.
,
1984
, “
Stochastic Methods for Global Optimization
,”
American J. of Mathematical and Management Sciences
, Vol.
4
, Nos.
1 & 2
, pp.
7
40
.
12.
Rockafellar, R. T., 1970, Convex Analysis, Princeton University Press, New Jersey.
13.
Tuy
H.
,
1964
, “
Concave Programming under Linear Constraints
,”
Aokl. Akad. Naul. SSSR
, Vol.
159
, pp.
32
35
.
14.
Tuy
H.
,
Thieu
T. V.
, and
Thai
NG. Q.
,
1985
, “
A Conical Algorithm for Globally Minimizing a Concave Function over a Closed Convex Set
,”
Mathematics of Operations Research
, Vol.
10
, pp.
498
514
.
15.
Tuy
H.
,
1987
, “
Convex Programs with an Additional Reverse Convex Constraint
,”
Journal of Optimization Theory and Applications
, Vol.
52
, No.
3
, pp.
463
486
.
16.
Unklesbay, K., Staats, G. E., and Creighton, D. L., 1972, “Optimal Design of Pressure Vessels,” ASME Paper 72-PVP-2.
17.
Wilde, D. J., 1978, Globally Optimal Design, John Wiley & Sons, New York.
This content is only available via PDF.
You do not currently have access to this content.