This paper presents a new systematic method for dealing with overconstrained mechanisms. With this one method we are able to verify all previously known overconstrained mechanisms. In addition, this method yields the input-output equations of any single-loop overconstrained mechanism. Two numerical examples and one set of input-output curves are presented.

1.
Baker
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mechanisms and Machine Theory
, Vol.
15
, pp.
267
286
.
2.
Baker
J. E.
,
1984
, “
On 5-Revolute Linkages with Parallel Adjacent Joint Axes
,”
Mechanisms and Machine Theory
, Vol.
19
, No.
6
, pp.
467
475
.
3.
Baker
J. E.
,
1993
, “
A Comparative Survey of the Bennett-Based 6-R Revolute Kinematic Loops
,”
Mechanisms and Machine Theory
, Vol.
28
, No.
1
, pp.
83
96
.
4.
Bennett, G. T., 1914, “The Skew Isogram Mechanism,” Proceedings of the London Mathematical Society, 13, 2nd series, pp. 151–173.
5.
Bricard, R., 1927, Lecons de cine´matique, Vol. 2, Gauthier-Villards, Paris.
6.
Delassus
E.
,
1922
, “
Les chaiˆnes articule´es ferme´es et de´formables a` quatre membres,’
Bulletin des Sciences Mathe´matiques, 2nd series
. Vol.
46
, pp.
283
304
.
7.
Goldberg
M.
,
1943
, “
New Five-Bar and Six-Bar Linkages in Three Dimensions
,”
Transactions of the ASME
, Vol.
65
, pp.
649
661
.
8.
Hunt
K. H.
,
1967
, “
Prismatic Pairs in Spatial Linkages
,”
Journal of Mechanisms
, Vol.
2
, pp.
213
230
.
9.
Mavroidis, C., 1993, Re´solution du proble´me ge´ome´trique inverse pour les manipulateurs se´rie a` 6 degre´s de liberte´, The´se de Doctorat, Unive´rsite´ Pierre et Marie Curie, Paris.
1.
Mavroidis
C.
, and
Roth
B.
,
1992
, “
Structural Parameters which Reduce the Number of Manipulator Configurations
,”
Robotics, Spatial Mechanisms, and Mechanical Systems
, ASME DE-Vol.
45
, pp.
359
366
.
2.
Also in the
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
116
, pp.
3
10
,
1994
.
1.
Mavroidis, C., and Roth, B., 1993, “New Manipulators with Simple Inverse Kinematics,” Proceeedings of the 9th CISM-IFToMM Symposium on Robots and Manipulators, (Romansy 92), Springer-Verlag, pp. 15–22.
2.
Mavroidis, C., and Roth, B., 1994, “Analysis and Synthesis of Overconstrained Mechanisms,” Mechanism Synthesis and Analysis, Vol. DE-70, ed. G. R. Pennock, ASME, New York, pp. 115–133.
3.
Mavroidis, C., and Roth, B., 1995, “New and Revised Overconstrained Mechanisms,” see following paper.
4.
Myard
F. E.
,
1931
a, “
Contribution a` la ge´ome´trie des syste´mes articule´s
,”
Bulletin de la Socie´te´ Mathe´matique de France
, Vol.
59
, pp.
183
210
.
5.
Myard, F. E., 1931b, “Sur les chaines ferme´es a` quatre couples rotoi¨des non-concourants, deformables au permier degre´ de liberte´. Isogramme torique,” Comptes Rendus Hebdomadaires des Se´ances de l’Acade`mie de Science, Paris Vol. 192, pp. 1194–1196.
6.
Pamidi
P. R.
,
Soni
A. H.
, and
Dukkipati
R. V.
,
1973
, “
Necessary and Sufficient Existence Criteria of Overconstrained Five-Link Spatial Mechanisms with Helical, Cylinder, Revolute and Prism Pairs
,”
ASME Journal of Engineering for Industry
, Vol.
95
, pp.
737
743
.
7.
Phillips, J., 1990, Freedom in Machinery, Volume 2: Screw Theory Exemplified, Cambridge University Press, UK.
8.
Raghavan, M., and Roth, B., 1990a, “Kinematic Analysis of the 6R Manipulator of General Geometry,” Proceedings of the 5th International Symposium on Robotics Research, edited by H. Miura and S. Arimoto, MIT press, Cambridge, pp. 263–270.
9.
Raghavan, M., and Roth, B., 1990b, “A General Solution for the inverse Kinematics of all Series Chains,” Proceedings of the 8th CISM-IFToMM Symposium on Robots and Manipulators, (Romansy 90), Cracow, Poland, pp. 24–31.
10.
Raghavan
M.
, and
Roth
B.
,
1993
, “
Inverse Kinematics of the General 6R Manipulator and Related Linkages
,”
ASME JOURNAL OF MECHANICAL DESIGN
, Vol.
105
, pp.
502
508
.
11.
Sarrus, P. T., 1853, “Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulairs; et reciproquement,” Comptes Rendus Hebdomadaires des Se´ances de l’Acade`mie des Sciences, Vol. 36, pp. 1036–1038, Paris.
12.
Waldron
K. J.
,
1968
, “
Hybrid Overconstrained Linkages
,”
Journal of Mechanisms
, Vol.
3
, pp.
73
78
.
13.
Waldron
K. J.
,
1969
, “
Symmetric Overconstrained Linkages
,”
ASME Journal of Engineering for Industry
, Vol.
91
, pp.
158
162
.
14.
Waldron
K. J.
,
1973
, “
A Study of Overconstrained Linkage Geometry by Solution of Closure Equations—Part II. Four-Bar Linkages with Lower Pair Joints other than Screw Joints
,”
Mechanism and Machine Theory
, Vol.
8
, pp.
233
247
.
15.
Waldron
K. J.
,
1979
, “
Overconstrained Linkages
,”
Environment and Planning B
, Vol.
6
, pp.
393
402
.
16.
Wohlhart, K., 1987, “A New 6R Space Mechanism,” Proceedings of the 7th World Congress on the Theory of Machines and Mechanisms, Sevilla, Spain September 1987, Vol. 1, pp. 193–198.
17.
Wohlhart
K.
,
1991
, “
Merging Two General Goldberg 5R Linkages to Obtain a New 6R Space Mechanism
,”
Mechanism and Machine Theory
, Vol.
26
, pp.
659
668
.
This content is only available via PDF.
You do not currently have access to this content.