This paper presents a critical analysis of the metric of rigid body displacements obtained from the so-called kinematic mapping. It is shown that this metric is not suitable for finite rigid bodies. The paper also addresses the metrics obtained for the planar group, as it can be regarded as a subgroup of the group of all rigid body displacements, which is denoted here as the Euclidean group. Finally, the paper proposes some metrics for the set of spatial and planar displacements for a finite rigid body, undergoing a finite displacement.

1.
Akhras
R.
, and
Angeles
J.
,
1990
, “
Unconstrained Nonlinear Least-Square Optimization of Planar Linkages for Rigid-Body Guidance
,”
Mechanisms and Machine Theory
, Vol.
25
, pp.
97
118
.
2.
Bazaraa, M. S., and Shetty, C. M., 1979, Nonlinear Programming Theory and Algorithms, John Wiley and Sons, New York.
3.
Blaschke
W.
,
1911
, “
Euklidische Kinematik und nichteuklidische Geometric I, II
,”
Zeitschrift fu¨r Mathematik und Physik
, Vol.
60
, pp.
61
91
.
4.
Blaschke, W., and Mu¨ller, H. R., 1956, Ebene Kinematik, Verlag von R. Oldenbourg, Mu¨nchen.
5.
Bobrow
J. E.
,
1989
, “
A Direct Minimization Approach for Obtaining the Distance between Convex Polyhedra
,”
The International Journal of Robotic Research
, Vol.
8
, pp.
65
76
.
6.
Ge, Q. J., and Ravani, B., 1992, “Geometric Construction of Be´zier Type Motion Interpolants,” preprint.
7.
Gilbert
E. G.
, and
Johnson
D. W.
,
1985
, “
Distance Functions and Their Application to Robot Path Planning in the Presence of Obstacles
,”
IEEE Journal of Robotics and Automation
, Vol.
RA-1
, pp.
21
30
.
8.
Gilbert
E. G.
,
Johnson
D. W.
, and
Keerthi
S. S.
,
1988
, “
A Fast Procedure for Computing the Distance Between Complex Objects in Three-Dimensional Space
,”
IEEE Journal of Robotics and Automation
, Vol.
4
, pp.
193
203
.
9.
Golub, G. H., and Van Loan, C. F., 1989, Matrix Computations, 2nd ed., The Johns Hopkins University Press, Baltimore.
10.
Gru¨nwald
J.
,
1911
, “
Ein Abbildungsprinzip welches die ebene Geometrie und Kinematik mit der ra¨umlichen Geometrie verknu¨pft
,”
Sitzunsberichte Akademie Wissenschaflichen Wien
, Vol.
120
, pp.
677
741
.
11.
Kazerounian, K., and Rastegar, J., 1992, “Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements,” Flexible Mechanisms, Dynamics and Analysis, ASME DE-Vol. 47, Kinzel, G., Reinholtz, C., Lipkin, H., Tsai, L. W., Pennock, G. R., Cipra, R. J., Thompson, B. B., The American Society of Mechanical Engineers, New York.
12.
Latombe, J. C., 1991, Robot Motion Planning, Kluwer Academic Publishers, Boston.
13.
Ravani, B., 1982, Kinematic Mappings as Applied to Motion Approximation and Mechanism Synthesis, Diss. Stanford University.
14.
Ravani
B.
, and
Roth
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
JOURNAL OF MECHANISMS, TRANSMISSIONS, AND AUTOMATION IN DESIGN
, Vol.
105
, pp.
460
467
.
15.
Ravani
B.
, and
Roth
B.
,
1984
, “
Mappings of Spatial Kinematics
,”
JOURNAL OF MECHANISMS, TRANSMISSIONS, AND AUTOMATION IN DESIGN
, Vol.
106
, pp.
341
347
.
16.
Rico, J. M., 1993, “Representation of the Euclidean Group and Kinematic Mappings,” Research Report, Departamento de Ingenieri´a Meca´nica, Instituto Tecnolo´gico de Celaya.
17.
Rudin, W., 1974, Principles of Mathematical Analysis, McGraw Hill Book Co., New York.
18.
Sarkisyan
Y. L.
,
Gupta
K. C.
, and
Roth
B.
,
1973
, “
Kinematic Geometry Associated with the Least-Square Approximation of a Given Motion
,”
ASME Journal of Engineering for Industry
, Vol.
95
, pp.
503
510
.
19.
Stephanos
M. C.
,
1883
, “
Me´moire sur la repre´sentation des homographies binaires par des points de l’space avec application a` l’e´tude des rotations sphe´riques
,”
Matematische Annalen
, Vol.
22
, pp.
299
367
.
20.
Study, E., 1903, Geometrie der Dynamen, Teubner Verlag, Leipzig.
21.
Study
E.
,
1912
, “
Grundlagen und Ziele der analytischen Kinematik
,”
Sitzungsberichte der Berliner Matematischen Gesselschaft
, Vol.
104
, pp.
36
60
.
This content is only available via PDF.
You do not currently have access to this content.