A method for the design of nonhomogeneous, variable-thickness, annular disks under internal and external pressures satisfying Tresca yield criterion is presented in this paper. The effects of varying the disk thickness and stiffness properties to achieve a fully stressed design are investigated. Analytical solutions for distributions of Young’s modulus and disk thickness variations have been developed for the case of fully stressed designs. Examples are given for three different cases, namely, constant thickness with variable Young’s modulus, variable thickness with constant Young’s modulus, and variable thickness with variable Young’s modulus. In the last case, due to the existence of many alternative solutions, optimal design techniques have been utilized. Application of the developed methodology for optimal designs of short fiber composites with random fiber orientations is discussed. The optimization results of fiber volume fraction distributions and thickness variations for a disk made of nylon 66 matrix with E glass fiber are given under specified pressure loadings.

This content is only available via PDF.
You do not currently have access to this content.