Significant attention has been paid recently to the topic of robot calibration. To improve the robot’s accuracy, various approaches to the measurement of the robot’s position and orientation (pose) and correction of its kinematic model have been proposed. Little attention, however, has been given to the method of estimation of the kinematic parameters from the measurement data. Typically, a least-squares solution method is used to estimate the corrections to the parameters of the model. In this paper, a method of kinematic parameter estimation is proposed where a standard least-squares estimation procedure is replaced by weighted least-squares. The weighting factors are calculated based on all the a priori available statistical information about the robot and the pose-measuring system. By giving greater weight to the measurements made where the standard deviation of the noise in the data is expected to be lower, a significant reduction in the error of the kinematic parameter estimates is made possible. The improvement in the calibration results was verified using a calibration simulation algorithm.

This content is only available via PDF.
You do not currently have access to this content.