The nonlinear equations of motion in multibody dynamics pose a difficult problem in linear control design. It is therefore desirable to have linearization capability in conjunction with a general-purpose multibody dynamics modeling technique. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient. It has also turned out to be more accurate because the analytical perturbation requires matrix and vector operations by circumventing numerical differentiation and other associated numerical operations that may accumulate computational error.

This content is only available via PDF.
You do not currently have access to this content.