Vibration normal modes and static correction modes have been previously used to model flexible bodies for dynamic analysis of mechanical systems. The efficiency and accuracy of using these modes to model a system depends on both the flexibility of each body and the applied loads. This paper develops a generalized method for the generation of a set of Ritz vectors to be used in addition to vibration normal modes to form the modal basis to model flexible bodies for dynamic analysis of multibody mechanical systems. The Ritz vectors are generated using special distribution of the D’Alembert force and the kinematic constraint forces due to gross-body motion of a flexible body. Combined with vibration normal modes, they form more efficient vector bases for the modeling of flexible bodies comparing to using vibration normal modes alone or using the combination of static correction modes and vibration normal modes. Ritz vectors can be regenerated when the system undergoes significant changes of its configuration and the regeneration procedure is inexpensive. The effectiveness of using the combination of vibration normal modes and the proposed Ritz vectors is demonstrated using a planar slider-crank mechanism.

This content is only available via PDF.
You do not currently have access to this content.