A dynamic modeling method is presented for spatial elastic manipulators that can account for a number of their realistic properties, including bearing clearances, actuator dynamics, and control system characteristics. Forces in the bearing clearances are modeled by nonlinear functions of the links’ relative motions and the internal geometry of the connection, or by experimentally measured properties. A detailed model is given for a revolute connection with radial and axial clearances. Results obtained for a SCARA manipulator show that the combined dynamic effects of bearing clearances, link elasticity, and control system characteristics can significantly degrade the system’s performance.

This content is only available via PDF.
You do not currently have access to this content.