An approach for the automatic generation and refinement of finite element meshes over nonconvex domains subdivided by multibody connected, rigid body-movable subdomains has been developed. The basis of this method relies in order on (1) the automatic insertion of nodes on the digitized boundaries and within the interiors of movable subdomains, (2) the generation of superelement meshes within the subdomains, (3) determination of intersection points between adjacent subdomains following their rigid body movement, (4) ensuring the satisfaction of interelement connectivity across subdomain boundaries, and (5) the interactive refinement of user-selectable subdomains using quadrilaterization for global refinement and triangularization for local refinement. The creation of a finite element mesh for an acetabular cup inserted in a human pelvis, which is representative of a mesh generated over complex, two-dimensional, multiply connected subdomains, as employed in an orthopedic total hip replacement, serves as a realistic application of this approach and demonstrates its utility for expeditiously performing finite element-based, parametric design studies.

This content is only available via PDF.
You do not currently have access to this content.