For mechanical systems that undergo intermittent motion, the usual formulation of the equations of motion is not valid over the periods of discontinuity, and a procedure for balancing the momenta of these systems is often performed. A canonical form of the equations of motion is used here as the differential equations of motion. A set of momentum balance-impulse equations is derived in terms of a system total momenta by explicitly integrating the canonical equations. The method is stable when the canonical equations are numerically integrated and it is efficient when the derived momentum balance-impulse equations are solved. The method shows that the constraint violation phenomenon, which is usually caused by the numerical integration error, can be substantially reduced as compared to the numerical integration of the standard Newtonian form of equations of motion. Examples are provided to illustrate the validity of the method.

This content is only available via PDF.
You do not currently have access to this content.