Probability-based optimal design of structures is presented. The emphasis here is to develop a practical approach to optimal design given random design parameters. The method is applicable to structures which are modeled using the finite element method. The Hasofer-Lind (H-L) second-moment design criterion is used to formulate the general design problem. A method for calculating the sensitivity coefficients is presented, which involves second-order design sensitivity analysis. The importance of second order derivatives is established. A nonlinear programming technique is used to solve the problem. Numerical results are presented, where stiffness parameters are treated as random variables.

This content is only available via PDF.
You do not currently have access to this content.