The vector-network technique is a methodical approach to formulating equations of motion for unconstrained dynamic systems, utilizing concepts from graph theory and vectorial mechanics; it is ideally suited to computer applications. In this paper, the vector-network theory is significantly improved and extended to include constrained mechanical systems with both open and closed kinematic chains. A new formulation procedure is developed in which new kinematic constraint elements are incorporated. The formulation is based on a modified tree/cotree classification, which deviates significantly from previous work, and reduces the number of equations of motions to be solved. The dynamic equations of motion are derived, with generalized accelerations and a subset of the reaction forces as solution variables, and a general kinematic analysis procedure is also developed, similar to that of the dynamic formulation. Although this paper restricts most discussions to two-dimensional (planar) systems, the new method is equally applicable to 3-dimensional systems.

This content is only available via PDF.
You do not currently have access to this content.