The application of multiobjective optimization techniques to minimize the dynamic reactions of planar mechanisms is studied. A systems-oriented procedure, which can easily incorporate variable angular velocity input as well as joint friction and external loading, is used for the dynamic analysis of the mechanisms. Goal programming, goal attainment, and a combined bounded objective function/lexicographic method are outlined as solution procedures. These optimization methods are implemented using a computer program based on an exterior penalty function approach. An example four-bar linkage is considered for illustration and the results obtained with different methods of optimization are reportred. It is observed that the methods presented in this paper offer greater flexibility and wider application in the optimal balancing of high-speed linkages.

This content is only available via PDF.
You do not currently have access to this content.