Based on classic theory of beams and certain modifications, a simple technique is derived in order to obtain an approximate value of the maximum bending moment in a rotationally symmetric circular plate with a variable thickness. It is assumed that one of the two concentric boundaries of the plate is clamped, and the other is free. Numerical examples for both cases of constant and variable thickness plates subject to uniform pressure or rim line loading are presented.

This content is only available via PDF.
You do not currently have access to this content.