Parametric vibration of initially curved columns loaded by axial-periodic loads has received considerable attention, concluding that regions of instability exist and that excitation frequencies less than the natural frequency of the principal resonance may occur. Recent publications have cautioned against the use of curved members in machines designed for precise operation, suggesting a detrimental coupling of the longitudinal and transverse deformations. In this work, the dynamic behavior of a slider-crank mechanism with an initially curved connecting rod is investigated. Governing equations of motion are developed using the Euler-Bernoulli beam theory. Both steady-state and transient solutions are determined, and compared with those obtained for the mechanism possessing a geometrically perfect (straight) connecting rod. A very small initial curvature is shown to cause a significantly greater steady-state response. The magnification in its transient response is shown to be even greater than that due to a straight connecting rod. Additionally, an excitation frequency less than the natural frequency is also shown to occur.

This content is only available via PDF.
You do not currently have access to this content.