Abstract

The purpose of this paper is to characterize the dynamics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a new process of directed self-folding of polymer sheets based on a resistively heated ribbon that is in contact with the sheets. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and the extent of local material flow. This method can be used to create practical three-dimensional (3D) structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples, and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. The results are quantitatively explained using a viscoelastic finite element model capable of describing bidirectional folds arising from the interplay between viscoelastic relaxation and strain mismatch between polystyrene and polyimide. Given the tunability of fold times and the extent of local material flow, resistive-heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering.

References

References
1.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Xu
,
L.
,
Shin
,
B.
,
Zhou
,
M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding Shape Memory Laminates for Automated Fabrication
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
.
2.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
14
), pp.
2345
2362
. 10.1177/0954406215597713
3.
Liu
,
Z.
,
Cui
,
A.
,
Li
,
J.
, and
Gu
,
C.
,
2019
, “
Folding 2D Structures Into 3D Configurations at the Micro/Nanoscale: Principles, Techniques, and Applications
,”
Adv. Mater.
,
31
(
4
), pp.
1
20
. 10.1002/adma.201802211
4.
Wang
,
Z.
,
Iquebal
,
A. S.
, and
Bukkapatnam
,
S. T. S.
,
2018
, “
A Vision-Based Monitoring Approach for Real-Time Control of Laser Origami Cybermanufacturing Processes
,”
Procedia Manuf.
,
26
, pp.
1307
1317
. 10.1016/j.promfg.2018.07.135
5.
Iquebal
,
A. S.
,
Wang
,
Z.
,
Ko
,
W. H.
,
Wang
,
Z.
,
Kumar
,
P. R.
,
Srinivasa
,
A.
, and
Bukkapatnam
,
S. T. S.
,
2018
, “
Towards Realizing Cybermanufacturing Kiosks: Quality Assurance Challenges and Opportunities
,”
Procedia Manuf.
,
26
, pp.
1296
1306
. 10.1016/j.promfg.2018.07.137
6.
Leong
,
T. G.
,
Zarafshar
,
A. M.
, and
Gracias
,
D. H.
,
2010
, “
Three-Dimensional Fabrication at Small Size Scales
,”
Small
,
6
(
7
), pp.
792
806
. 10.1002/smll.200901704
7.
Liu
,
Y.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2016
, “
‘2D or Not 2D’: Shape-Programming Polymer Sheets
,”
Prog. Polym. Sci.
,
52
, pp.
79
106
. 10.1016/j.progpolymsci.2015.09.001
8.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
28
), pp.
12441
12445
. 10.1073/pnas.0914069107
9.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chemie—Int. Ed.
,
50
(
8
), pp.
1890
1895
. 10.1002/anie.201006464
10.
Small
,
W.
IV
,
Singhal
,
P.
,
Wilson
,
T. S.
, and
Maitland
,
D. J.
,
2010
, “
Biomedical Applications of Thermally Activated Shape Memory Polymers
,”
J. Mater. Chem.
,
20
(
17
), pp.
3356
3366
. 10.1039/b923717h
11.
Yakacki
,
C. M.
,
Shandas
,
R.
,
Lanning
,
C.
,
Rech
,
B.
,
Eckstein
,
A.
, and
Gall
,
K.
,
2007
, “
Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications
,”
Biomaterials
,
28
(
14
), pp.
2255
2263
.
12.
Zirbel
,
S. A.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Deployment Methods for an Origami-Inspired Rigid-Foldable Array
,”
Proceedings of the 42nd Aerospace Mechanisms Symposium
,
Baltimore, MD
.
13.
Guo
,
X.
,
Li
,
H.
,
Ahn
,
B. Y.
,
Duoss
,
E. B.
,
Hsia
,
K. J.
,
Lewis
,
J. A.
, and
Nuzzo
,
R. G.
,
2009
, “
Two- and Three-Dimensional Folding of Thin Film Single-Crystalline Silicon for Photovoltaic Power Applications
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
48
), pp.
20149
20154
. 10.1073/pnas.0907390106
14.
Cho
,
J. H.
,
Hu
,
S.
, and
Gracias
,
D. H.
,
2008
, “
Self-Assembly of Orthogonal Three-Axis Sensors
,”
Appl. Phys. Lett.
,
93
(
4
), pp.
1
4
. 10.1063/1.2965616
15.
Judy
,
J. W.
, and
Muller
,
R. S.
,
1997
, “
Magnetically Actuated, Addressable Microstructures
,”
J. Microelectromech. Syst.
,
6
(
3
), pp.
249
255
. 10.1109/84.623114
16.
Yi
,
Y. W.
, and
Liu
,
C.
,
1999
, “
Magnetic Actuation of Hinged Microstructures
,”
J. Microelectromech. Syst.
,
8
(
1
), pp.
10
17
. 10.1109/84.749397
17.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
. 10.1002/adfm.201102978
18.
Kusuda
,
S.
,
Sawano
,
S.
, and
Konishi
,
S.
,
2007
, “
Fluid-Resistive Bending Sensor Having Perfect Compatibility With Flexible Pneumatic Balloon Actuator
,”
2007 IEEE 20th International Conference on Micro Electro Mechanical Systems
,
Hyogo, Japan
.
19.
Guan
,
J.
,
He
,
H.
,
Hansford
,
D. J.
, and
Lee
,
L. J.
,
2005
, “
Self-Folding of Three-Dimensional Hydrogel Microstructures
,”
J. Phys. Chem. B
,
109
(
49
), pp.
23134
23137
. 10.1021/jp054341g
20.
Stoychev
,
G.
,
Puretskiy
,
N.
, and
Ionov
,
L.
,
2011
, “
Self-Folding All-Polymer Thermoresponsive Microcapsules
,”
Soft Matter
,
7
(
7
), p.
3277
. 10.1039/c1sm05109a
21.
Luo
,
J. K.
,
Huang
,
R.
,
He
,
J. H.
,
Fu
,
Y. Q.
,
Flewitt
,
A. J.
,
Spearing
,
S. M.
,
Fleck
,
N. A.
, and
Milne
,
W. I.
,
2006
, “
Modelling and Fabrication of Low Operation Temperature Microcages With a Polymer/Metal/DLC Trilayer Structure
,”
Sens. Actuators A Phys.
,
132
(
1 SPEC. ISS.
), pp.
346
353
. 10.1016/j.sna.2006.03.004
22.
Suzuki
,
K.
,
Yamada
,
H.
,
Miura
,
H.
, and
Takanobu
,
H.
,
2007
, “
Self-Assembly of Three Dimensional Micro Mechanisms Using Thermal Shrinkage of Polyimide
,”
Microsyst. Technol.
,
13
(
8–10
), pp.
1047
1053
. 10.1007/s00542-006-0303-z
23.
Mueller
,
S.
,
Kruck
,
B.
, and
Baudisch
,
P.
,
2013
, “
LaserOrigami
,”
CHI ‘13 Extended Abstracts on Human Factors in Computing Systems
,
Paris, France
.
24.
Cho
,
J. H.
,
Azam
,
A.
, and
Gracias
,
D. H.
,
2010
, “
Three Dimensional Nanofabrication Using Surface Forces
,”
Langmuir
,
26
(
21
), pp.
16534
16539
. 10.1021/la1013889
25.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
. 10.1039/c1sm06564e
26.
Zhang
,
Q.
,
Wommer
,
J.
,
O’Rourke
,
C.
,
Teitelman
,
J.
,
Tang
,
Y.
,
Robison
,
J.
,
Lin
,
G.
, and
Yin
,
J.
,
2017
, “
Origami and Kirigami Inspired Self-Folding for Programming Three-Dimensional Shape Shifting of Polymer Sheets With Light
,”
Extrem. Mech. Lett.
,
11
, pp.
111
120
. 10.1016/j.eml.2016.08.004
27.
Davis
,
D.
,
Mailen
,
R.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2015
, “
Self-Folding of Polymer Sheets Using Microwaves and Graphene Ink
,”
RSC Adv.
,
5
(
108
), pp.
89254
89261
. 10.1039/C5RA16431A
28.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
. 10.1039/c3sm51003d
29.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
. 10.1126/science.1252610
30.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
Smart Mater. Struct.
,
23
(
9
), p.
094006
. 10.1088/0964-1726/23/9/094006
31.
An
,
B.
,
Miyashita
,
S.
,
Tolley
,
M. T.
,
Aukes
,
D. M.
,
Meeker
,
L.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
An End-to-End Approach to Making Self-Folded 3D Surface Shapes by Uniform Heating
,”
IEEE International Conference on Robotics & Automation
,
Hong Kong, China
.
32.
Liu
,
Y.
,
Miskiewicz
,
M.
,
Escuti
,
M. J.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2014
, “
Three-Dimensional Folding of Pre-Strained Polymer Sheets via Absorption of Laser Light
,”
J. Appl. Phys.
,
115
(
20
), p.
204911-1
. 10.1063/1.4880160
33.
Piqué
,
A.
,
Mathews
,
S.
,
Birnbaum
,
A.
, and
Charipar
,
N.
,
2011
, “
Microfabricating 3D Structures by Laser Origami
,”
SPIE Newsroom
,
Bellingham WA
.
34.
ANSYS
,
2011
,
Mechanical APDL Element Reference
,
ANSYS, Inc.
35.
Mailen
,
R. W.
,
Liu
,
Y.
,
Dickey
,
M. D.
,
Zikry
,
M.
, and
Genzer
,
J.
,
2015
, “
Modelling of Shape Memory Polymer Sheets That Self-Fold in Response to Localized Heating
,”
Soft Matter
,
11
(
39
), pp.
7827
7834
. 10.1039/C5SM01681A
36.
Mailen
,
R. W.
,
Dickey
,
M. D.
,
Genzer
,
J.
, and
Zikry
,
M. A.
,
2017
, “
A Fully Coupled Thermo-Viscoelastic Finite Element Model for Self-Folding Shape Memory Polymer Sheets
,”
J. Polym. Sci. Part B Polym. Phys.
,
55
(
16
), pp.
1207
1219
. 10.1002/polb.24372
You do not currently have access to this content.