Abstract

The types of biomedical devices that can be three-dimensional printed (3DP) are limited by the mechanical properties of the resulting materials. As a result, much research has been focused on adding carbon nanotubes (CNT) to these photocurable polymers to make them stronger. The objective of this study was to expand the use of 3DP to prosthetics by testing the hypothesis that adding CNTs to a stereolithographic (SLA) photocurable resin will result in a cured polymer with increased impact and fatigue resistance. For impact testing, twenty-six total specimens, 13 with nanotubes and 13 without nanotubes, were printed on a Form2 SLA printer. Once all the specimens were printed, washed, and cured, the impact resistance was quantified using a pendulum impact tester using a notched Izod configuration. Similarly, twelve R. R. Moore fatigue specimens were printed, washed, and cured. The specimens with SWCNTs (0.312 ± 0.036 ft lb/in.) had a significantly lower impact resistance compared to the non-SWCNT specimens (0.364 ± 0.055 ft lb/in.), U = 34.0, p = 0.004. Adding SWCNTs also reduced the short cycle fatigue life (i.e., 103) from 3.1 × 5 to 8.8 × 3 psi and increased the endurance limit from 0.4 to 3.0 × 3 psi. If used for creating a foot prosthetic, the non-SWCNT polymer would last 2919 cycles while the SWCNT mixture would last <1 cycle. Therefore, SLA polymers do not yet have the impact and fatigue resistance capabilities to be used for prosthetic feet.

References

References
1.
Malik
,
H. H.
,
Darwood
,
A. R. J.
,
Shaunak
,
S.
,
Kulatilake
,
P.
,
El-Hilly
,
A. A.
,
Mulki
,
O.
, and
Baskaradas
,
A.
,
2015
, “
Three-Dimensional Printing in Surgery: A Review of Current Surgical Applications
,”
J. Surg. Res.
,
199
(
2
), pp.
512
522
. 10.1016/j.jss.2015.06.051
2.
Ventola
,
C. L.
,
2014
, “
Medical Applications for 3D Printing: Current and Projected Uses
,”
Pharm. Ther.
,
39
(
10
), p.
704
.
3.
Zuniga
,
J.
,
Katsavelis
,
D.
,
Peck
,
J.
,
Stollberg
,
J.
,
Petrykowski
,
M.
,
Carson
,
A.
, and
Fernandez
,
C.
,
2015
, “
Cyborg Beast: A Low-Cost 3D-Printed Prosthetic Hand for Children With Upper-Limb Differences
,”
BMC Res. Notes
,
8
(
1
), p.
10
. 10.1186/s13104-015-0971-9
4.
Lipson
,
H.
,
2013
, “
New World of 3-D Printing Offers “Completely New Ways of Thinking”: Q&A With Author, Engineer, and 3-D Printing Expert Hod Lipson
,”
IEEE Pulse
,
4
(
6
), pp.
12
14
. 10.1109/MPUL.2013.2279615
5.
Banks
,
J.
,
2013
, “
Adding Value in Additive Manufacturing: Researchers in the United Kingdom and Europe Look to 3D Printing for Customization
,”
IEEE Pulse
,
4
(
6
), pp.
22
26
. 10.1109/MPUL.2013.2279617
6.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
(
1
), pp.
1
10
.
7.
Wang
,
X.
,
Jiang
,
M.
,
Zhou
,
Z.
,
Gou
,
J.
, and
Hui
,
D.
,
2017
, “
3D Printing of Polymer Matrix Composites: A Review and Prospective
,”
Composites Part B
,
110
, pp.
442
458
. 10.1016/j.compositesb.2016.11.034
8.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1
), pp.
389
405
. 10.1007/s00170-015-7576-2
9.
Sandoval
,
J. H.
,
Soto
,
K. F.
,
Murr
,
L. E.
, and
Wicker
,
R. B.
,
2007
, “
Nanotailoring Photocrosslinkable Epoxy Resins With Multi-Walled Carbon Nanotubes for Stereolithography Layered Manufacturing
,”
J. Mater. Sci.
,
42
(
1
), pp.
156
165
. 10.1007/s10853-006-1035-2
10.
Weng
,
Z.
,
Zhou
,
Y.
,
Lin
,
W.
,
Senthil
,
T.
, and
Wu
,
L.
,
2016
, “
Structure-Property Relationship of Nano Enhanced Stereolithography Resin for Desktop SLA 3D Printer
,”
Composites Part A
,
88
, pp.
234
242
. 10.1016/j.compositesa.2016.05.035
11.
Yildirim
,
E. D.
,
Yin
,
X.
,
Nair
,
K.
, and
Sun
,
W.
,
2008
, “
Fabrication, Characterization, and Biocompatibility of Single-Walled Carbon Nanotube-Reinforced Alginate Composite Scaffolds Manufactured Using Freeform Fabrication Technique
,”
J. Biomed. Mater. Res., Part B
,
87B
(
2
), pp.
406
414
. 10.1002/jbm.b.31118
12.
Warder
,
H. H.
,
Fairley
,
J. K.
,
Coutts
,
J.
,
Glisson
,
R. R.
, and
Gall
,
K.
,
2018
, “
Examining the Viability of Carbon Fiber Reinforced Three-Dimensionally Printed Prosthetic Feet Created by Composite Filament Fabrication
,”
Prosthet. Orthot. Int.
,
42
(
6
), pp.
644
651
. 10.1177/0309364618785726
13.
Nilsson
,
J.
, and
Thorstensson
,
A.
,
1989
, “
Ground Reaction Forces at Different Speeds of Human Walking and Running
,”
Acta Physiol. Scand.
,
136
(
2
), pp.
217
227
. 10.1111/j.1748-1716.1989.tb08655.x
14.
Klute
,
G. K.
,
Burge
,
J. S.
, and
Segal
,
A. D.
,
2004
, “
Heel-Region Properties of Prosthetic Feet and Shoes
,”
J. Reabhil. Res. Dev.
,
41
(
4
), pp.
535
546
. 10.1682/JRRD.2003.02.0025
15.
Lee
,
W. C. C.
, and
Zhang
,
M.
,
2006
, “
Fatigue Test of Low-Cost Flexible-Shank Monolimb Trans-Tibial Prosthesis
,”
Prosthet. Orthot. Int.
,
30
(
3
), pp.
305
315
. 10.1080/03093640600864172
16.
Liu
,
H.
, and
Mo
,
J.
,
2010
, “
Study on Nanosilica Reinforced Stereolithography Resin
,”
J. Reinf. Plast. Compos.
,
29
(
6
), pp.
909
920
. 10.1177/0731684409102838
17.
ASTM
,
D.
,
2010
,
ASTM D 256-10 Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
18.
Faul
,
F.
,
Erdfelder
,
E.
,
Buchner
,
A.
, and
Lang
,
A.-G.
,
2009
, “
Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses
,”
Behav. Res. Methods
,
41
(
4
), pp.
1149
1160
. 10.3758/BRM.41.4.1149
19.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
,
Samulski
,
E. T.
, and
DeSimone
,
J. M.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
. 10.1126/science.aaa2397
20.
Zguris
,
Z.
,
2016
,
How Mechanical Properties of Stereolithography 3D Prints Are Affected by UV Curing
,
Formlabs Inc
.
21.
Ghoshal
,
S.
,
2017
, “
Polymer/Carbon Nanotubes (CNT) Nanocomposites Processing Using Additive Manufacturing (Three-Dimensional Printing) Technique: An Overview
,”
Fibers
,
5
(
4
), p.
40
. 10.3390/fib5040040
22.
Sanner
,
M. F.
,
1999
, “
Python: A Programming Language for Software Integration and Development
,”
J. Mol. Graphics Modell.
,
17
(
1
), pp.
57
61
.
23.
Field
,
A.
,
2009
,
Discovering Statistics Using SPSS
,
SAGE Publications
.
24.
Noehren
,
B.
,
Schmitz
,
A.
,
Hempel
,
R.
,
Westlake
,
C.
, and
Black
,
W.
,
2014
, “
Assessment of Strength, Flexibility, and Running Mechanics in Men With Iliotibial Band Syndrome
,”
J. Orthop. Sports Phys. Ther.
,
44
(
3
), pp.
217
222
. 10.2519/jospt.2014.4991
25.
Cohen
,
J.
,
1977
,
Statistical Power Analysis for the Behavioral Sciences
,
New York University
.
26.
Portney
,
L. G.
, and
Watkins
,
M. P.
,
1993
,
Foundations of Clinical Research: Applications to Practice
,
Appleton & Lange
,
Norwalk, CT
.
27.
Wilken
,
J. M.
,
Rodriguez
,
K. M.
,
Brawner
,
M.
, and
Darter
,
B. J.
,
2012
, “
Reliability and Minimal Detectible Change Values for Gait Kinematics and Kinetics in Healthy Adults
,”
Gait Posture
,
35
(
2
), pp.
301
307
. 10.1016/j.gaitpost.2011.09.105
28.
Wu
,
A.-M.
,
Shao
,
Z.-X.
,
Wang
,
J.-S.
,
Yang
,
X.-D.
,
Weng
,
W.-Q.
,
Wang
,
X.-Y.
,
Xu
,
H.-Z.
,
Chi
,
Y.-L.
, and
Lin
,
Z.-K.
,
2015
, “
The Accuracy of a Method for Printing Three-Dimensional Spinal Models
,”
PLoS One
,
10
(
4
), p.
e0124291
.
29.
Gomez-Gras
,
G.
,
Jerez-Mesa
,
R.
,
Travieso-Rodriguez
,
J. A.
, and
Lluma-Fuentes
,
J.
,
2018
, “
Fatigue Performance of Fused Filament Fabrication PLA Specimens
,”
Mater. Des.
,
140
, pp.
278
285
. 10.1016/j.matdes.2017.11.072
30.
Juvinall
,
R. C.
, and
Marshek
,
K. M.
,
2017
,
Fundamentals of Machine Component Design
,
Wiley
,
New York
.
31.
Omasta
,
M.
,
Paloušek
,
D.
,
Návrat
,
T.
, and
Rosický
,
J.
,
2012
, “
Finite Element Analysis for the Evaluation of the Structural Behaviour, of a Prosthesis for Trans-Tibial Amputees
,”
Med. Eng. Phys.
,
34
(
1
), pp.
38
45
. 10.1016/j.medengphy.2011.06.014
32.
Wepasnick
,
K. A.
,
Smith
,
B. A.
,
Bitter
,
J. L.
, and
Howard Fairbrother
,
D.
,
2010
, “
Chemical and Structural Characterization of Carbon Nanotube Surfaces
,”
Anal. Bioanal. Chem.
,
396
(
3
), pp.
1003
1014
. 10.1007/s00216-009-3332-5
33.
Moniruzzaman
,
M.
, and
Winey
,
K. I.
,
2006
, “
Polymer Nanocomposites Containing Carbon Nanotubes
,”
Macromolecules
,
39
(
16
), pp.
5194
5205
. 10.1021/ma060733p
34.
Arash
,
B.
,
Wang
,
Q.
, and
Varadan
,
V. K.
,
2014
, “
Mechanical Properties of Carbon Nanotube/Polymer Composites
,”
Sci. Rep.
,
4
, p.
6479
. 10.1038/srep06479
35.
Zhao
,
M.
,
Ming
,
B.
,
Kim
,
J.-W.
,
Gibbons
,
L. J.
,
Gu
,
X.
,
Nguyen
,
T.
,
Park
,
C.
,
Lillehei
,
P. T.
,
Villarrubia
,
J. S.
,
Vladár
,
A. E.
, and
Alexander Liddle
,
J.
,
2015
, “
New Insights Into Subsurface Imaging of Carbon Nanotubes in Polymer Composites via Scanning Electron Microscopy
,”
Nanotechnology
,
26
(
8
), p.
085703
. 10.1088/0957-4484/26/8/085703
36.
Gojny
,
F. H.
,
Wichmann
,
M. H. G.
,
Köpke
,
U.
,
Fiedler
,
B.
, and
Schulte
,
K.
,
2004
, “
Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content
,”
Compos. Sci. Technol.
,
64
(
15
), pp.
2363
2371
. 10.1016/j.compscitech.2004.04.002
You do not currently have access to this content.