The tensile strength of seventeen engineering materials including steels, Al alloys, and fiber-reinforced plastics, has been determined at strain-rates from 10−3 to 103 sec−1. Variable effects on the stress-strain behavior were found in the different materials with the Al alloys showing minimal strain-rate sensitivity and the plastics highest. All results exhibit a logarithmic dependence of flow stress on strain-rate and thus the dynamic factors (ratio of dynamic to low rate or quasi-static strengths) are as dependent upon changes in quasi-static testing speed (∼1 in./min (0.42 mm/s) as they are to changes at high speed (50,000 in./min or 50 mph (22.35 m/s). No significant influence of strain-rate on elongation or reduction in area has been found for any of the materials. Steels, which comprise the majority of the presently investigated materials, exhibit a higher rate sensitivity for yielding than for higher strain deformation. It is shown that the flow stress results for these steels leads to an internally consistent scheme when (1) strength level and (2) strengthening mechanisms are properly accounted for.

This content is only available via PDF.
You do not currently have access to this content.